1. Let X be a nonnegative random variable. Show that for $p>0$, we have

$$
\mathbb{E} X^{p}=\int_{0}^{\infty} p t^{p-1} \mathbb{P}(X>t) \mathrm{d} t
$$

2. Let X be a random variable such that $\mathbb{E}|X|^{p}<\infty$ for some $p>0$. Show that $\lim _{t \rightarrow \infty} t^{p} \mathbb{P}(|X|>t)=0$.
3. Show that the probability that in n throws of a fair die the number of sixes lies between $\frac{1}{6} n-\sqrt{n}$ and $\frac{1}{6} n+\sqrt{n}$ is at least $\frac{31}{36}$.
4. Let X be a random variable with values in an interval $[0, a]$. Show that for every t in this interval, we have

$$
\mathbb{P}(X \geq t) \geq \frac{\mathbb{E} X-t}{a-t}
$$

5. Prove the Payley-Zygmund inequality: for a nonnegative random variable X and every $\theta \in[0,1]$, we have

$$
\mathbb{P}(X>\theta \mathbb{E} X) \geq(1-\theta)^{2} \frac{(\mathbb{E} X)^{2}}{\mathbb{E} X^{2}}
$$

6. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent random signs. Prove that there is a positive constant c such that for every $n \geq 1$ and real numbers a_{1}, \ldots, a_{n}, we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|>\frac{1}{2} \sqrt{\sum_{i=1}^{n} a_{i}^{2}}\right) \geq c
$$

Hint. Use the Paley-Zygmund inequality and Q4 HW5.
7. Prove that for nonnegative random variables X and Y, we have

$$
\mathbb{E} \frac{X}{Y} \geq \frac{(\mathbb{E} \sqrt{X})^{2}}{\mathbb{E} Y}
$$

8. Let X, X_{1}, X_{2}, \ldots be identically distributed random variables such that $\mathbb{P}(X>t)>0$ for every $t>0$. Suppose that for every $\eta>1$, we have $\lim _{t \rightarrow \infty} \frac{\mathbb{P}(X>\eta t)}{\mathbb{P}(X>t)}=0$. For $n \geq 1$, let a_{n} be the smallest number a such that $n \mathbb{P}(X>a) \leq 1$. Show that for every $\varepsilon>0$, we have $\max _{i \leq n} X_{i} \leq(1+\varepsilon) a_{n}$ with high probability as $n \rightarrow \infty$, i.e. $\mathbb{P}\left(\max _{i \leq n} X_{i} \leq(1+\varepsilon) a_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 1$.
9. Let $n \geq 1, p \in(0,1)$ and let $X_{i, j}, 1 \leq i<j \leq n$ be i.i.d. $\operatorname{Ber}(p)$ random variables. Let $G=(V, E)$ be an undirected simple graph with the vertex set $V=\{1, \ldots, n\}$ and the (random) edge set $E=\left\{\{i, j\}, X_{i, j}=1,1 \leq i<j \leq n\right\}$ (the so-called Erdös-Rényi, a.k.a. $G_{n, p}$ model). Show that for every $\varepsilon>0$, if $p>(1+\varepsilon) \frac{\log n}{n}$, then G has no isolated vertices with high probability as $n \rightarrow \infty$, i.e. \mathbb{P} (G has no isolated vertices) $\underset{n \rightarrow \infty}{ } 1$.
10. Let X be an integrable random variable and define

$$
X_{n}= \begin{cases}-n, & X<-n \\ X, & |X| \leq n \\ n, & X>n\end{cases}
$$

Does the sequence X_{n} converge a.s., in L_{1}, in probability?

11* Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be i.i.d. symmetric random signs. Show that there is a constant $c>0$ such that for every $n \geq 1$ and reals a_{1}, \ldots, a_{n}, we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}}\right) \geq c .
$$

