- 1. Let X_1, X_2, X_3 be i.i.d. standard Gaussian random variables. Find the mean and variance of $Y = 3X_1 X_2 + 2X_3$. Find its density.
- Show that a Gaussian random vector in ℝⁿ has independent components if and only if they are uncorrelated.
- **3.** Let (X, Y) be a standard Gaussian random vector in \mathbb{R}^2 . Let $\rho \in (-1, 1)$ and define

$$(U,V) = \left(\frac{\sqrt{1+\rho} + \sqrt{1-\rho}}{2}X + \frac{\sqrt{1+\rho} - \sqrt{1-\rho}}{2}Y, \frac{\sqrt{1+\rho} + \sqrt{1-\rho}}{2}Y + \frac{\sqrt{1+\rho} - \sqrt{1-\rho}}{2}X\right)$$

Find the density of (U, V). Is this a Gaussian random vector? What is its covariance matrix? What is the distribution of U and V? Determine the values of ρ for which U and V are independent.

4. Let $\rho \in (-1, 1)$ and let (U, V) be a random vector in \mathbb{R}^2 with density

$$f(u,v) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}(u^2 - 2\rho uv + v^2)\right\}, \qquad (u,v) \in \mathbb{R}^2.$$

Is it a Gaussian random vector? Find the covariance matrix of (U, V). Find the distributions of the marginals U and V. Find the conditional density of V given U = u and the conditional expectation $\mathbb{E}(V|U = u)$. Determine the values of ρ for which U and V are independent.

- 5. Suppose (X, Y) is a centred (i.e., EX = EY = 0) Gaussian random vector in R² with Cov([X/Y]) = [²₁ ¹₁]. Find, a) the density of (X, Y), b) the density of X + 3Y, c) all α ∈ R for which X + Y and X + αY are independent.
- 6. Let G be a standard Gaussian vector in \mathbb{R}^n and let U be an $n \times n$ orthogonal matrix. Find the density of UG. Are the components of this vector independent?
- 7. Let g be a standard Gaussian random variable. Show that $\mathbb{E}g^{2m} = 1 \cdot 3 \cdot \ldots \cdot (2m-1)$, $m = 1, 2, \ldots$
- 8. Let X_1, X_2, \ldots, X_n be independent random variables, each with mean zero and finite fourth moment. Show that

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right)^4 = \sum_{i=1}^{n} \mathbb{E}X_i^4 + 6\sum_{1 \le i < j \le n} \mathbb{E}X_i^2 \mathbb{E}X_j^2.$$

9^{*} Let $0 . Let <math>X_1, \ldots, X_n$ be i.i.d. Ber(p) random variables and let Y_1, \ldots, Y_n be i.i.d. Ber(q) random variables. Show that for any $t \leq n$,

$$\mathbb{P}(X_1 + \ldots + X_n \ge t) \le \mathbb{P}(Y_1 + \ldots + Y_n \ge t)$$

(intuitively, probability of getting at least t heads when tossing a biased coin showing heads with probability p does not decrease as we increase p).