1. Let X_{1}, X_{2}, X_{3} be i.i.d. standard Gaussian random variables. Find the mean and variance of $Y=3 X_{1}-X_{2}+2 X_{3}$. Find its density.
2. Show that a Gaussian random vector in \mathbb{R}^{n} has independent components if and only if they are uncorrelated.
3. Let (X, Y) be a standard Gaussian random vector in \mathbb{R}^{2}. Let $\rho \in(-1,1)$ and define $(U, V)=\left(\frac{\sqrt{1+\rho}+\sqrt{1-\rho}}{2} X+\frac{\sqrt{1+\rho}-\sqrt{1-\rho}}{2} Y, \frac{\sqrt{1+\rho}+\sqrt{1-\rho}}{2} Y+\frac{\sqrt{1+\rho}-\sqrt{1-\rho}}{2} X\right)$.

Find the density of (U, V). Is this a Gaussian random vector? What is its covariance matrix? What is the distribution of U and V ? Determine the values of ρ for which U and V are independent.
4. Let $\rho \in(-1,1)$ and let (U, V) be a random vector in \mathbb{R}^{2} with density

$$
f(u, v)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(u^{2}-2 \rho u v+v^{2}\right)\right\}, \quad(u, v) \in \mathbb{R}^{2}
$$

Is it a Gaussian random vector? Find the covariance matrix of (U, V). Find the distributions of the marginals U and V. Find the conditional density of V given $U=u$ and the conditional expectation $\mathbb{E}(V \mid U=u)$. Determine the values of ρ for which U and V are independent.
5. Suppose (X, Y) is a centred (i.e., $\mathbb{E} X=\mathbb{E} Y=0)$ Gaussian random vector in \mathbb{R}^{2} with $\operatorname{Cov}\left(\left[\begin{array}{c}X \\ Y\end{array}\right]\right)=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$. Find, a) the density of $\left.(X, Y), \mathrm{b}\right)$ the density of $\left.X+3 Y, \mathrm{c}\right)$ all $\alpha \in \mathbb{R}$ for which $X+Y$ and $X+\alpha Y$ are independent.
6. Let G be a standard Gaussian vector in \mathbb{R}^{n} and let U be an $n \times n$ orthogonal matrix. Find the density of $U G$. Are the components of this vector independent?
7. Let g be a standard Gaussian random variable. Show that $\mathbb{E} g^{2 m}=1 \cdot 3 \cdot \ldots \cdot(2 m-1)$, $m=1,2, \ldots$.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables, each with mean zero and finite fourth moment. Show that

$$
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)^{4}=\sum_{i=1}^{n} \mathbb{E} X_{i}^{4}+6 \sum_{1 \leq i<j \leq n} \mathbb{E} X_{i}^{2} \mathbb{E} X_{j}^{2}
$$

9* Let $0<p<q<1$. Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Ber}(p)$ random variables and let Y_{1}, \ldots, Y_{n} be i.i.d. $\operatorname{Ber}(q)$ random variables. Show that for any $t \leq n$,

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n} \geq t\right) \leq \mathbb{P}\left(Y_{1}+\ldots+Y_{n} \geq t\right)
$$

(intuitively, probability of getting at least t heads when tossing a biased coin showing heads with probability p does not decrease as we increase p).

