1. Let X and Y be independent random variables taking values in the set $\{0,1, \ldots\}$ with the generating functions G_{X} and G_{Y}. Let k be an integer. Show that $\mathbb{P}(X-Y=k)$ equals the coefficient at t^{k} in the expansion of the function $G_{X}(t) G_{Y}(1 / t)$ into a formal power series.
2. Let $X_{1}, X_{2}, \ldots, X_{6}$ be independent identically distributed random variables uniform on the set $\{0,1, \ldots, 9\}$. Find $\mathbb{P}\left(X_{1}+X_{2}+X_{3}=X_{4}+X_{5}+X_{6}\right)$.
3. There are n different coupons and each time you obtain a coupon it is equally likely to be any of the n types. Let Y_{i} be the additional number of coupons collected, after obtaining i distinct types, before a new type is collected (including the new one). Show that Y_{i} has the geometric distribution with parameter $\frac{n-i}{n}$ and find the expected number of coupons collected before you have a complete set.
4. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ be independent random signs. Show that for any reals a_{1}, \ldots, a_{n} we have

$$
\mathbb{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|^{4} \leq 3\left(\mathbb{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|^{2}\right)^{2}
$$

Show that the constant 3 is best possible (in other words, is sharp), that is, if it is replaced with any smaller number, the statement is no longer true.
5. Show that

$$
F(t)= \begin{cases}\frac{1}{3} e^{t}, & t<0 \\ \frac{1}{2}+\frac{1}{2}\left(1-e^{-t}\right), & t \geq 0\end{cases}
$$

is the distribution function of a random variable, say X. Compute $\mathbb{P}(X<-1)$, $\mathbb{P}(X<0), \mathbb{P}(X \leq 0), \mathbb{P}(X=0), \mathbb{P}(X>1)$ and $\mathbb{P}(X=2)$.
6. The double exponential distribution with parameter $\lambda>0$ has density $f(x)=\frac{\lambda}{2} e^{-\lambda|x|}$. Find its distribution function, sketch its plot, find the mean, variance and p th moment.
7. Let X be a uniform random variable on $(0,1)$. Find the distribution function and density of $Y=-\ln X$. What is the distribution of Y called?
8. Let X be a Poisson random variable with parameter λ. Show that $\mathbb{P}(X \geq k)=$ $\mathbb{P}(Y \leq \lambda)$, for $k=1,2, \ldots$, where Y is a random variable with the Gamma distribution with parameter k.
9. Let X be a random variable with continuous distribution function F. Show that $Y=F(X)$ is a random variable uniformly distributed on the interval $(0,1)$.

10* Let F be a distribution function and U be a uniform random variable on $(0,1)$. Define the generalised inverse of F by

$$
G(y)=\inf \{x, F(x) \geq y\}
$$

Show that the distribution function of the random variable $G(U)$ is F.

