1. Find the characteristic functions of random variables with distribution $\operatorname{Ber}(p), \operatorname{Bin}(n, p)$, Poiss (λ), Unif($[-1,1])$.
2. Compute the characteristic function of a random variable with density $\frac{1}{2} e^{-|x|}, x \in \mathbb{R}$ (this distribution is often called symmetric exponential, or double-sided exponential or Laplace). Using the inversion formula for the density, find the characteristic function of a Cauchy random variable with density $\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}$.
3. Let X_{1}, X_{2}, \ldots be i.i.d. standard Cauchy random variables. Show that for any reals a_{1}, \ldots, a_{n}, the sum $a_{1} X_{1}+\ldots+a_{n} X_{n}$ has the same distribution as $\left(\left|a_{1}\right|+\ldots+\left|a_{n}\right|\right) X_{1}$.
4. Prove Scheffe's lemma: If X_{1}, X_{2}, \ldots is a sequence of continuous random variables with densities f_{1}, f_{2}, \ldots and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \mathbb{R}$ for some probability density f, then $\int_{\mathbb{R}}\left|f-f_{n}\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$. Conclude that then $X_{n} \xrightarrow{d} X$ for a random variable X with density f (in other words, pointwise convergence of densities implies convergence in distribution). Considering $f_{n}(x)=(1+\cos (2 \pi n x)) \mathbf{1}_{[0,1]}(x)$, show that the converse statement does not hold.
5. Let $U_{1}, \ldots, U_{2 n+1}$ be i.i.d. random variables uniform on $[0,1]$. Order them in a nondecreasing way and call the $n+1$ term (the middle one) M_{n}. Show that M_{n} has density $(2 n+1)\binom{2 n}{n} x^{n}(1-x)^{n} \mathbf{1}_{[0,1]}(x)$. Find $\mathbb{E} M_{n}$ and $\operatorname{Var}\left(M_{n}\right)$. Show that $\sqrt{8 n}\left(M_{n}-\frac{1}{2}\right)$ converges in distribution to a standard Gaussian random variable.
6. Prove that if a sequence (X_{n}) of random variables converges in probability to a random variable X, then $X_{n} \xrightarrow{d} X$.

Hint: There is a direct proof in the textbook by Grimmett and Welsh. Alternatively, argue by contradiction using Theorems 5.5 and 3.6.
7. Show that for a random variable X the following are equivalent
(a) X is symmetric, that is X and $-X$ have the same distribution
(b) X and εX have the same distribution, where ε is an independent random sign
(c) X and $\varepsilon|X|$ have the same distribution, where ε is an independent random sign
(d) the characteristic function of X is real valued.

8* Prove that a sequence $\left(X_{n}\right)$ of random variables converges in probability to a constant random variable $X=c$ if and only if $X_{n} \xrightarrow{d} c$.

Hint: Upper bound the indicator function $\mathbf{1}_{\{|x-c|>\varepsilon\}}$ by $g(x)=\frac{|x-c|}{\varepsilon} \mathbf{1}_{\{|x-c| \leq \varepsilon\}}+\mathbf{1}_{\{|x-c|>\varepsilon\}}$ which is continuous.

9* For sequences of random variables $\left(X_{n}\right)$ and $\left(Y_{n}\right)$, we have $X_{n} \xrightarrow{d} c$ and $Y_{n} \xrightarrow{d} Y$ for a constant $c \in \mathbb{R}$ and a random variable Y. Show that then $X_{n}+Y_{n} \xrightarrow{d} c+Y$.

Hint: Use the tightness of $\left(Y_{n}\right)$, convergence in probability of $\left(X_{n}\right)$ and the uniform continuity of a continuous function on a bounded interval.

10* Find an example when $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$ do not imply that $X_{n}+Y_{n} \xrightarrow{d} X+Y$. Show that if all the random variables are independent, the statement is true.

11* Suppose that for sequences of random variables $\left(X_{n}\right)$ and $\left(Y_{n}\right)$, we have $X_{n} \xrightarrow{d} c$ and $Y_{n} \xrightarrow{d} Y$ for a constant $c \in \mathbb{R}$ and a random variable Y. Show that then $X_{n} Y_{n} \xrightarrow{d} c Y$. Hint: First show the statement with $c=0$ using $X_{n} \xrightarrow{\mathbb{P}} 0$, the tightness of $\left(Y_{n}\right)$ and $\mathbb{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) \leq \mathbb{P}\left(\left|X_{n}\right|>\frac{\varepsilon}{M}\right)+\mathbb{P}\left(\left|Y_{n}\right|>M\right)$. For the general case, use $X_{n} Y_{n}=$ $\left(X_{n}-c\right) Y_{n}+c Y_{n}$.

12* Let X_{1}, X_{2}, \ldots be i.i.d. standard Gaussian random variables. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $\frac{M_{n}}{\sqrt{2 \log n}} \xrightarrow{\mathbb{P}} 1$.

Hint: Use results of HW12 Q8. Q7 and Q10 from this HW may be of use, too.

13* If for a random variable $X, \phi_{X}^{\prime \prime}(0)$ exists, then $\mathbb{E}|X|^{2}<\infty$.

14* Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} uniformly distributed on the sphere $\left\{x \in \mathbb{R}^{n}, x_{1}^{2}+\ldots+x_{n}^{2}=n\right\}$. Show that X_{1} converges in distribution to a standard Gaussian random variable.

