- 1. Find the characteristic functions of random variables with distribution Ber(p), Bin(n, p), Poiss (λ) , Unif([-1, 1]).
- 2. Compute the characteristic function of a random variable with density $\frac{1}{2}e^{-|x|}$, $x \in \mathbb{R}$ (this distribution is often called symmetric exponential, or double-sided exponential or Laplace). Using the inversion formula for the density, find the characteristic function of a Cauchy random variable with density $\frac{1}{\pi(1+x^2)}$, $x \in \mathbb{R}$.
- **3.** Let X_1, X_2, \ldots be i.i.d. standard Cauchy random variables. Show that for any reals a_1, \ldots, a_n , the sum $a_1X_1 + \ldots + a_nX_n$ has the same distribution as $(|a_1| + \ldots + |a_n|)X_1$.
- 4. Prove Scheffé's lemma: If X_1, X_2, \ldots is a sequence of continuous random variables with densities f_1, f_2, \ldots and $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in \mathbb{R}$ for some probability density f, then $\int_{\mathbb{R}} |f f_n| \xrightarrow[n\to\infty]{} 0$. Conclude that then $X_n \xrightarrow{d} X$ for a random variable X with density f (in other words, pointwise convergence of densities implies convergence in distribution). Considering $f_n(x) = (1 + \cos(2\pi nx))\mathbf{1}_{[0,1]}(x)$, show that the converse statement does not hold.
- 5. Let U_1, \ldots, U_{2n+1} be i.i.d. random variables uniform on [0, 1]. Order them in a nondecreasing way and call the n+1 term (the middle one) M_n . Show that M_n has density $(2n+1)\binom{2n}{n}x^n(1-x)^n\mathbf{1}_{[0,1]}(x)$. Find $\mathbb{E}M_n$ and $\operatorname{Var}(M_n)$. Show that $\sqrt{8n}\left(M_n-\frac{1}{2}\right)$ converges in distribution to a standard Gaussian random variable.
- 6. Prove that if a sequence (X_n) of random variables converges in probability to a random variable X, then $X_n \xrightarrow{d} X$.

Hint: There is a direct proof in the textbook by Grimmett and Welsh. Alternatively, argue by contradiction using Theorems 5.5 and 3.6.

- **7.** Show that for a random variable X the following are equivalent
 - (a) X is symmetric, that is X and -X have the same distribution
 - (b) X and εX have the same distribution, where ε is an independent random sign
 - (c) X and $\varepsilon |X|$ have the same distribution, where ε is an independent random sign
 - (d) the characteristic function of X is real valued.

8.* Prove that a sequence (X_n) of random variables converges in probability to a constant random variable X = c if and only if $X_n \xrightarrow{d} c$.

Hint: Upper bound the indicator function $\mathbf{1}_{\{|x-c|>\varepsilon\}}$ by $g(x) = \frac{|x-c|}{\varepsilon} \mathbf{1}_{\{|x-c|\leq\varepsilon\}} + \mathbf{1}_{\{|x-c|>\varepsilon\}}$ which is continuous.

9* For sequences of random variables (X_n) and (Y_n) , we have $X_n \xrightarrow{d} c$ and $Y_n \xrightarrow{d} Y$ for a constant $c \in \mathbb{R}$ and a random variable Y. Show that then $X_n + Y_n \xrightarrow{d} c + Y$. *Hint: Use the tightness of* (Y_n) , *convergence in probability of* (X_n) and the uniform continuity of a continuous function on a bounded interval.

- **10**^{*} Find an example when $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ do not imply that $X_n + Y_n \xrightarrow{d} X + Y$. Show that if all the random variables are independent, the statement is true.
- 11* Suppose that for sequences of random variables (X_n) and (Y_n) , we have $X_n \xrightarrow{d} c$ and $Y_n \xrightarrow{d} Y$ for a constant $c \in \mathbb{R}$ and a random variable Y. Show that then $X_n Y_n \xrightarrow{d} cY$. *Hint: First show the statement with* c = 0 using $X_n \xrightarrow{\mathbb{P}} 0$, the tightness of (Y_n) and $\mathbb{P}(|X_nY_n| > \varepsilon) \leq \mathbb{P}(|X_n| > \frac{\varepsilon}{M}) + \mathbb{P}(|Y_n| > M)$. For the general case, use $X_nY_n = (X_n - c)Y_n + cY_n$.
- **12:** Let X_1, X_2, \ldots be i.i.d. standard Gaussian random variables. Let $M_n = \max\{X_1, \ldots, X_n\}$. Show that $\frac{M_n}{\sqrt{2\log n}} \xrightarrow{\mathbb{P}} 1$.
 - Hint: Use results of HW12 Q8. Q7 and Q10 from this HW may be of use, too.
- **13**^{*} If for a random variable X, $\phi''_X(0)$ exists, then $\mathbb{E}|X|^2 < \infty$.
- 14* Let $X = (X_1, \ldots, X_n)$ be a random vector in \mathbb{R}^n uniformly distributed on the sphere $\{x \in \mathbb{R}^n, x_1^2 + \ldots + x_n^2 = n\}$. Show that X_1 converges in distribution to a standard Gaussian random variable.