1. Let X_{1}, X_{2}, \ldots be random variables such that $\mathbb{P}\left(X_{n}=\frac{k}{n}\right)=\frac{1}{n}, k=1, \ldots, n, n=$ $1,2, \ldots$. Does the sequence $\left(X_{n}\right)$ converge in distribution? If yes, find the limiting distribution.
2. Let U_{1}, U_{2}, \ldots be i.i.d. random variables uniformly distributed on $[0,1]$. Let $X_{n}=$ $\min \left\{U_{1}, \ldots, U_{n}\right\}$. Show that $n X_{n}$ converges in distribution to an exponential random variable with parameter one.
3. Suppose that X, X_{1}, X_{2}, \ldots are nonnegative integer-valued random variables. Show that $X_{n} \xrightarrow[n \rightarrow \infty]{d} X$, if and only if $\mathbb{P}\left(X_{n}=k\right) \underset{n \rightarrow \infty}{ } \mathbb{P}(X=k)$, for every $k=0,1,2, \ldots$.
4. For $p \in[0,1]$, let X_{p} be a Geometric random variable with parameter p. Show that the sequence $\left(\frac{1}{n} X_{1 / n}\right)$ converges in distribution to an exponential random variable with parameter 1.
5. Let X_{1}, X_{2}, \ldots be i.i.d. random variables uniform on $\{1,2, \ldots, n\}$. Let

$$
N_{n}=\min \left\{l \geq 2, \quad X_{k}=X_{l} \text { for some } k<l\right\}
$$

In the birthday problem (HW1 Q4), we showed that $\mathbb{P}\left(N_{n}>k\right)=\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)$, for every integer $k \geq 1$. Explain why. For every $t \geq 0$ show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{N_{n}}{\sqrt{n}}>t\right)=$ $e^{-t^{2} / 2}$ and show that the sequence $\left(\frac{N_{n}}{\sqrt{n}}\right)$ converges in distribution to a random variable with density $x e^{-x^{2} / 2} \mathbf{1}_{x \geq 0}$.
6. Let X_{1}, X_{2}, \ldots be i.i.d. exponential random variables with parameter 1. Let $M_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $M_{n}-\log n$ converges in distribution to a random variable with the distribution function $e^{-e^{-x}}, x \in \mathbb{R}$.

Hint: this was essentially done in HW6 Q3.
7. Show that for positive $t, \int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \leq \frac{1}{t} e^{-t^{2} / 2}$ and $\int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \geq \frac{t}{t^{2}+1} e^{-t^{2} / 2}$. Conclude that for a standard Gaussian random variable Z and positive t,

$$
\frac{1}{\sqrt{2 \pi}} \frac{t}{t^{2}+1} e^{-t^{2} / 2} \leq \mathbb{P}(Z>t) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} / 2}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{\mathbb{P}(Z>t)}{\frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} / 2}}=1
$$

8. Let X_{1}, X_{2}, \ldots be i.i.d. standard Gaussian random variables. For $n=2,3, \ldots$ let b_{n} be such that $\mathbb{P}\left(X_{1}>b_{n}\right)=\frac{1}{n}$. Show that $\lim _{n \rightarrow \infty} \frac{b_{n}}{\sqrt{2 \log n}}=1$. Let $M_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $b_{n}\left(M_{n}-b_{n}\right)$ converges in distribution to a random variable with the distribution function $e^{-e^{-x}}, x \in \mathbb{R}$.
Hint: Using Q^{7}, first show that for every $a \in \mathbb{R}, \lim _{t \rightarrow \infty} \frac{\mathbb{P}\left(X_{1}>t+\frac{a}{t}\right)}{\mathbb{P}\left(X_{1}>t\right)}=e^{-a}$.
9* Show that for every $t \geq 0$,

$$
\frac{2}{t+\sqrt{t^{2}+4}} e^{-t^{2} / 2}<\int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x<\frac{2}{t+\sqrt{t^{2}+2}} e^{-t^{2} / 2}
$$

10* For a random variable X,
(a) we define its essential supremum as

$$
\text { ess } \sup X=\inf \{M>0, \mathbb{P}(X \leq M)=1\}
$$

Show that

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \underset{p \rightarrow \infty}{\longrightarrow} \text { ess sup } X
$$

(thus it makes sense to define the ∞-moment as $\|X\|_{\infty}=$ ess sup X).
(b) If $\mathbb{E}|X|^{p_{0}}<\infty$ for some $p_{0}>0$, then $\mathbb{E} \log |X|$ exists and

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \underset{p \rightarrow 0+}{\longrightarrow} e^{\mathbb{E} \log |X|}
$$

(thus it makes sense to define the 0th moment as $\|X\|_{0}=e^{\mathbb{E} \log |X|}$).

- Revision problems before Midterm 2 (not for grading) -

1. Let X be a random variable with the distribution function

$$
F(t)= \begin{cases}\frac{1}{3} e^{t}, & t<0 \\ \frac{1}{2}+\frac{1}{2}\left(1-e^{-t}\right), & t \geq 0\end{cases}
$$

Compute $\mathbb{P}(X<-1), \mathbb{P}(X<0), \mathbb{P}(X \leq 0), \mathbb{P}(X=0), \mathbb{P}(X>1)$ and $\mathbb{P}(X=2)$. Is X a continuous random variable? Find the distribution function of $Y=e^{X}$.
2. For $\alpha \in \mathbb{R}$ define

$$
F_{\alpha}(t)= \begin{cases}0, & t<1 \\ \alpha(t-1)^{2}, & 1 \leq t<2 \\ 1, & t \geq 2\end{cases}
$$

Find all α such that F_{α} is a distribution function of a random variable. For those α, let X_{α} be a random variable with distribution function F_{α}. Find $\mathbb{P}\left(X_{\alpha} \geq 1\right), \mathbb{P}\left(X_{\alpha}=2\right)$ and $\mathbb{P}\left(X_{\alpha}>2\right)$. Is X_{α} a continuous random variable? Find the distribution function of $Y=\left(X_{0}-1\right)^{2}$.
3. Let X be a random variable with density $f(x)=\frac{1}{2} e^{-|x|}$. Find $\mathbb{E} X$ and $\mathbb{E}|X|$. Find the distribution function of X^{2}.
4. Let X and Y be independent random variables such that X has the exponential distribution with parameter 2 and Y has Gaussian distribution with mean 1 and variance 2. Find $\mathbb{E}(X-2 Y)^{2}$.
5. Let X and Y be independent standard Gaussian random variables. What is the distribution of $Z=3 X-4 Y$? Find its density Find $\mathbb{E} e^{(Z)^{2} / 100}$ and $\mathbb{E} \sqrt{X^{2}+Y^{2}}$. Consider the random vector $V=\left[\begin{array}{ccc}1 & 1 \\ -3 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y\end{array}\right]$. Is V a Gaussian random vector? Find its expectation and covariance matrix. Find the density of V.
6. What is the density of a standard Gaussian random variable, that is a Gaussian random variable with mean zero and variance one? Let X and Y be independent standard Gaussian random variables. What is the distribution of $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$? Are the variables X and $X+Y$ independent? Are the variables $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$ and $\frac{\sqrt{3}}{2} X+\frac{1}{2} Y$ independent? Find the density of $\sqrt{X^{2}+Y^{2}}$.
7. Let g be a standard Gaussian random variable. Find $\mathbb{E} e^{g^{2} / 4}$. Find all $c \in \mathbb{R}$ such that $\mathbb{E} e^{c g^{2}}$ is finite. Let $g_{1}, g_{2}, \ldots, g_{n}$ be independent standard Gaussian random variables. What is the distribution of $g_{1}+\ldots+g_{n}$? Find the set of all points $a=\left(a_{1}, \ldots, a_{n}\right)$ in \mathbb{R}^{n} for which $\mathbb{E} e^{\left(a_{1} g_{1}+\ldots+a_{n} g_{n}\right)^{2}}$ is finite.

