1. Show that if for every $\delta>0$ we have $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}-X\right|>\delta\right)<\infty$, then $X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} X$.
2. Show that if there is a sequence of positive numbers δ_{n} convergent to 0 such that $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}-X\right|>\delta_{n}\right)<\infty$, then $X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} X$.
3. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\mathbb{P}\left(\left|X_{i}\right|<1\right)=1$. Show that $X_{1} X_{2} \cdot \ldots \cdot X_{n}$ converges to 0 a.s. and in L_{1}.
4. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with density g which is positive. Show that for every continuous function f such that $\int_{\mathbb{R}}|f|<\infty$, we have $\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \int_{\mathbb{R}} f$. (This provides a method of numerical integration.)
5. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\mathbb{P}\left(X_{i}=1\right)=p=1-\mathbb{P}\left(X_{i}=-1\right)$ with $\frac{1}{2}<p<1$. Let $S_{n}=X_{1}+\ldots+X_{n}$ (a random walk with a drift to the right). Show that $S_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \infty$.
6. Find $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \int_{0}^{1} \ldots \int_{0}^{1} \sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}$ (or show the limit does not exist).
7. Let f be a continuous function on $[0,1]$. Find $\lim _{n \rightarrow \infty} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\sqrt[n]{x_{1} \cdot \ldots \cdot x_{n}}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$ (or show it does not exist).
8. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\mathbb{E} X_{i}^{-}<\infty$ and $\mathbb{E} X_{i}^{+}=+\infty$. Show that $\frac{X_{1}+\ldots+X_{n}}{n}$ tends to ∞ a.s.
9. Show that for every $0<p<1$, Minkowski's inequality in L_{p} fails, that is for every $0<p<1$, there are random variables X and Y such that $\|X+Y\|_{p}>\|X\|_{p}+\|Y\|_{p}$. Show that for $0<p<1$ and every random variables X and Y, we have

$$
\|X+Y\|_{p}^{p} \leq\|X\|_{p}^{p}+\|Y\|_{p}^{p}
$$

10. Show that for every $x \in \mathbb{R}$, we have $\frac{e^{x}+e^{-x}}{2} \leq e^{x^{2} / 2}$.

11* Khinchin's inequality: for every $p>0$, there are positive constants A_{p}, B_{p} which depend only on p such that for every n and every real numbers a_{1}, \ldots, a_{n}, we have

$$
A_{p}\left(\sum_{i=1}^{2} a_{i}^{2}\right)^{1 / 2} \leq\left(\mathbb{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|^{p}\right)^{1 / p} \leq B_{p}\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. symmetric random signs.

