1. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $\mathbb{P}(X=Y)=1$ (in other words, the limit in probability is unique).
2. Let X_{1}, X_{2}, \ldots be i.i.d. integrable random variables. Prove that $\frac{1}{n} \max _{k \leq n}\left|X_{k}\right|$ converges to 0 in probability.
3. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $X_{n}+Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X+Y$.
4. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $X_{n} Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X Y$.
5. Prove that a sequence of random variables X_{n} converges a.s. if and only if for every $\varepsilon>0, \lim _{N \rightarrow \infty} \mathbb{P}\left(\bigcap_{n, m \geq N}\left|X_{n}-X_{m}\right|<\varepsilon\right)=1$ (the Cauchy condition).
6. Does a sequence of independent random $\operatorname{signs} \varepsilon_{1}, \varepsilon_{2}, \ldots$ converge a.s.?
7. Let X_{1}, X_{2}, \ldots be independent random variables, $X_{n} \sim \operatorname{Poiss}(1 / n)$. Does the sequence X_{n} converge a.s., in L_{2}, in probability?
8. Let X be a random variable such that $\mathbb{E} e^{\delta|X|}<\infty$ for some $\delta>0$. Show that $\mathbb{E}|X|^{p}<\infty$ for every $p>0$.
9. Let X be a random variable such that $\mathbb{E} e^{t X}<\infty$ for every $t \in \mathbb{R}$. Show that the function $t \mapsto \log \mathbb{E} e^{t X}$ is convex on \mathbb{R}.
10. Let X be a random variable such that $\mathbb{E}|X|^{p}<\infty$ for every $p>0$. Show that the function $p \mapsto \log \|X\|_{1 / p}$ is convex on $(0, \infty)$.
11. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be i.i.d. symmetric random signs. Show that there is a constant $c>0$ such that for every $n \geq 1$ and reals a_{1}, \ldots, a_{n}, we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \geq \sqrt{\sum_{i=1}^{n} a_{i}^{2}}\right) \geq c .
$$

