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1 Expectation

The goal of this section is to define expectation of random variables and establish its

basic properties. We shall only consider real-valued random variables. Recall that a

function X : Ω→ R on a probability space (Ω,F ,P) is called a random variable if for

every x ∈ R, the preimage {X ≤ x} = {ω ∈ Ω, X(ω) ≤ x} = X−1((−∞, x]) is an event

(belongs to the sigma-field F).

A random variable X is called simple if its image X(Ω) is a finite set, that is

X =

n∑
k=1

xk1Ak ,

for some distinct x1, . . . , xn ∈ R (values) and events A1, . . . , An which form a partition

of Ω (we have, Ak = {X = xk}).
The expectation of the simple random variable X, denoted EX, is defined as

EX =
n∑
k=1

xkP (Ak) .

The expectation of a nonnegative random variable X is defined as

EX = sup{EZ, Z is simple and Z ≤ X}.

Note that EX ≥ 0 because we can always take Z = 0. We can have EX = +∞ (for

instance, for a discrete random variable X with P (X = k) = 1
k(k−1) , k = 2, 3, . . .). For

an arbitrary random variable X, we write

X = X+ −X−,

where

X+ = max{X, 0} = X1{X≥0}

is the positive part of X and

X− = −min{X, 0} = −X1{X≤0}

is the negative part of X. These are nonnegative random variables and the expectation

of X is defined as

EX = EX+ − EX−

provided that at least one of the quantities EX+, EX− is finite (to avoid ∞−∞). We

say that X is integrable if E|X| < ∞. Since |X| = X+ + X−, we have that X is

integrable if and only if EX+ <∞ and EX− <∞.

One of the desired properties of expectation is linearity. It of course holds for simple

random variables.
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1.1 Theorem. Let X and Y be simple random variables. Then E(X+Y ) = EX+EY .

Proof. Let X =
∑m
k=1 xk1Ak and Y =

∑n
l=1 yl1Bl for some reals xk, yl and events Ak

and Bl are such that the Ak partition Ω and the Bl partition Ω. Then the events Ak∩Bl,
k ≤ m, l ≤ n partition Ω and

X + Y =
∑

k≤m,l≤n

(xk + yl)1Ak∩Bl .

This is a simple random variable with

E(X + Y ) =
∑

k≤m,l≤n

(xk + yl)P (Ak ∩Bl)

=
∑

k≤m,l≤n

xkP (Ak ∩Bl) +
∑

k≤m,l≤n

ylP (Ak ∩Bl)

=
∑
k≤m

xk
∑
l≤n

P (Ak ∩Bl) +
∑
l≤n

yl
∑
k≤m

P (Ak ∩Bl)

=
∑
k≤m

xkP

Ak ∩ ⋃
l≤n

Bl

+
∑
l≤n

ylP

 ⋃
k≤m

Ak ∩Bl


=
∑
k≤m

xkP (Ak) +
∑
l≤n

ylP (Bl) ,

which is EX + EY and this finishes the proof.

1.1 Nonnegative random variables

Our main goal is to prove linearity of expectation. We first establish a few basic prop-

erties of expectation for nonnegative random variables.

1.2 Theorem. Let X and Y be nonnegative random variables. We have

(a) if X ≤ Y , then EX ≤ EY ,

(b) for a ≥ 0, E(a+X) = a+ EX and E(aX) = aEX,

(c) if EX = 0, then X = 0 a.s. (i.e. P (X = 0) = 1)

(d) if A and B are events such that A ⊂ B, then EX1A ≤ EX1B.

Proof. (a) Let ε > 0. By definition, there is a simple random variable Z such that

Z ≤ X and EZ > EX − ε. Then also Z ≤ Y , so by the definition of EY , we have

EZ ≤ EY . Thus EX − ε < EY . Sending ε to 0 finishes the argument.

(b) For a simple random variable Z, clearly E(a + Z) = a + EZ and E(aZ) = aEZ. It

remains to follow the proof of (a).
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(c) For n ≥ 1, we have X ≥ X1{X≥1/n} ≥ 1
n1{X≥1/n}, so by (a) we get

0 = EX ≥ E
1

n
1{X≥1/n} =

1

n
P (X ≥ 1/n) ,

thus P (X ≥ 1/n) = 0, so

P (X > 0) = P

⋂
n≥1

{X ≥ 1/n}

 = lim
n→∞

P (X ≥ 1/n) = 0.

(d) follows immediately from (a).

The following lemma gives a way to approximate nonnegative random variables with

monotone sequences of simple ones.

1.3 Lemma. If X is a nonnegative random variable, then there is a sequence (Zn) of

nonnegative simple random variables such that for every ω ∈ Ω, Zn(ω) ≤ Zn+1(ω) and

Zn(ω) −−−−→
n→∞

X(ω).

Proof. Define

Zn =

n·2n∑
k=1

k − 1

2n
1{ k−1

2n ≤X<
k
2n }

+ n1{X≥n}.

Fix ω ∈ Ω. Then Zn(ω) is a nondecreasing sequence (check!). Since n > X(ω) for large

enough n, we have for such n that 0 ≤ X(ω)− Zn(ω) ≤ 2−n.

The following is a very important and useful tool allowing to exchange the order of

taking the limit and expectation for monotone sequences.

1.4 Theorem (Lebesgue’s monotone convergence theorem). If Xn is a sequence of

nonnegative random variables such that Xn ≤ Xn+1 and Xn −−−−→
n→∞

X, then

EXn −−−−→
n→∞

EX.

Proof. By 1.2 (a), EXn ≤ EXn+1 and EXn ≤ EX, so limn EXn exists and is less than or

equal to EX. It remains to show that EX ≤ limn EXn. Take a simple random variable

Z such that 0 ≤ Z ≤ X, with the largest value say K. Observe that for every n ≥ 1

and ε > 0,

Z ≤ (Xn + ε)1{Z<Xn+ε} +K1{Z≥Xn+ε}. (1.1)

Claim. For nonnegative random variables X, Y and an event A, we have

E(X1A + Y 1Ac) ≤ EX1A + EY 1Ac .

Proof of the claim. Fix ε > 0. Take a simple random variable Z such that Z ≤ X1A +

Y 1Ac and EZ > E(X1A + Y 1Ac)− ε. Note that

Z1A ≤ X1A and Z1Ac ≤ Y 1Ac .
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Thus by 1.2 (a),

EZ1A ≤ EX1A and EZ1Ac ≤ EY 1Ac .

Adding these two inequalities together and using that EZ1A + EZ1Ac = EZ, which

follows from linearity of expectation for simple random variables (Theorem 1.1), we get

E(X1A + Y 1Ac)− ε < EZ ≤ EX1A + EY 1Ac .

Sending ε→ 0 finishes the argument.

Applying the claim to (1.1), we obtain

EZ ≤ EXn + ε+KP (Z ≥ Xn + ε) .

The events {Z ≥ Xn + ε} form a decreasing family (because Xn ≤ Xn+1 and their

intersection is {Z ≥ X + ε} = ∅ (because Xn → X and Z ≤ X). Therefore taking

n→∞ in the last inequality gives

EZ ≤ lim
n

EXn + ε.

Taking the supremum over simple random variables Z ≤ X gives

EX ≤ lim
n

EXn + ε.

Letting ε→ 0, we finish the proof.

As a corollary we obtain a result about the limit inferior of nonnegative random

variables and its expectation.

1.5 Theorem (Fatou’s lemma). If X1, X2, . . . are nonnegative random variables, then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn.

Proof. Let Yn = infk≥nXk. Then this is a nondecreasing sequence which converges to

lim infn→∞Xn and Yn ≤ Xn. Note that

lim inf
n→∞

EXn ≥ lim inf
n→∞

EYn = lim
n→∞

EYn,

where the last equality holds because the sequence EYn, as nondecreasing, is convergent.

By Lebesgue’s monotone converge theorem,

lim
n→∞

EYn = E
(

lim
n→∞

Yn

)
= E lim inf

n→∞
Xn,

which in view of the previous inequality finishes the proof.

We are ready to prove linearity of expectation for nonnegative random variables.
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1.6 Theorem. Let X and Y be nonnegative random variables. Then

E(X + Y ) = EX + EY.

Proof. By Lemma 1.3, there are nondecreasing sequences (Xn) and (Yn) of nonnegative

simple random variables such that Xn → X and Yn → Y . Then the sequence (Xn+Yn)

is also monotone and Xn + Yn → X + Y . By Theorem 1.1,

E(Xn + Yn) = EXn + EYn.

Letting n → ∞, by the virtue of Lebesgue’s monotone convergence theorem, we get in

the limit E(X + Y ) = EX + EY .

1.2 General random variables

Key properties of expectation for general random variables are contained in our next

theorem.

1.7 Theorem. If X and Y are integrable random variables, then

(a) X + Y is integrable and E(X + Y ) = EX + EY ,

(b) E(aX) = aEX for every a ∈ R,

(c) if X ≤ Y , then EX ≤ EY ,

(d) |EX| ≤ E|X|.

Proof. (a) By the triangle inequality Theorem 1.2 (a) and Theorem 1.6,

E|X + Y | ≤ E(|X|+ |Y |) = E|X|+ E|Y |

and the right hand side is finite by the assumption, thus X + Y is integrable.

To show the linearity, write X + Y in two different ways

(X + Y )+ − (X + Y )− = X + Y = X+ −X− + Y + − Y −,

rearrange

(X + Y )+ +X− + Y − = (X + Y )− +X+ + Y +,

to be able to use the linearity of expectation for nonnegative random variables (Theorem

1.6) and get

E(X + Y )+ + EX− + EY − = E(X + Y )− + EX+ + EY +,

which rearranged again gives E(X + Y ) = EX + EY .

(b) We leave this as an exercise.
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(c) Note that X ≤ Y is equivalent to saying that X+ ≤ Y + and X− ≥ Y − (if X = X+,

then X ≤ Y implies that Y = Y +, hence X+ ≤ Y +; similarly, if Y = −Y −, then X ≤ Y
implies that X = −X−, hence X− ≥ Y −). It remains to use Theorem 1.2 (a).

(d) Since −|X| ≤ X ≤ |X|, by (c) we get −E|X| ≤ EX ≤ E|X|, that is |EX| ≤ E|X|.

1.3 Discrete and continuous random variables

We show that the general definition of expectation we made agrees with the ad hoc

definitions we made for discrete and continuous random variables in terms of their

probability mass and probability density functions. We begin with discrete random

variables.

1.8 Theorem. Let X be a discrete random variable taking values . . . < x−2 < x−1 <

x0 ≤ 0 < x1 < x2 < . . .. Then EX exists if and only if at least one of the series∑0
k=−∞ xkP (X = xk),

∑∞
k=1 xkP (X = xk) converges and then

EX =

∞∑
k=−∞

xkP (X = xk) .

Proof. It suffices to show that for a nonnegative discrete random variable X taking

values 0 ≤ x1 < x2 < . . ., we have EX = µ with µ =
∑∞
k=1 xkP (X = xk) ∈ [0,∞].

Let Z be a simple nonnegative random variable such that Z ≤ X. First we show

that then EZ ≤ µ, which by taking the supremum over Z gives EX ≤ µ. Suppose

Z =
∑n
k=1 zk1Ak for some events Ak which partition Ω and nonnegative numbers zk.

Denote Bk = {X = xk}. Observe that the condition Z ≤ X for ω ∈ Ak gives

zk ≤ min
ω∈Ak

X(ω) = min
j:Ak∩Bj 6=∅

xj .

Since the Bj partition Ω, we have P (Ak) =
∑
j:Ak∩Bj 6=∅ P (Ak ∩Bj). Consequently,

EZ =

n∑
k=1

zkP (Ak) =

n∑
k=1

zk
∑

j:Ak∩Bj 6=∅
P (Ak ∩Bj)

≤
n∑
k=1

min
j:Ak∩Bj 6=∅

xj
∑

j:Ak∩Bj 6=∅
P (Ak ∩Bj)

≤
n∑
k=1

∑
j:Ak∩Bj 6=∅

xjP (Ak ∩Bj)

≤
n∑
k=1

∑
j≥1

xjP (Ak ∩Bj)

=
∑
j≥1

xjP (Bj) = µ

(in the second last equality we exchanged the order of summation and used that the Ak

partition Ω). This shows EX ≤ µ.
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To obtain the opposite inequality, for every ε > 0, we have to find a simple random

variable Z such that EZ > µ− ε. Since µ = limn→∞
∑n
k=1 xkP (X = xk), it suffices to

take Z =
∑n
k=1 xk1{X=xk} for n large enough.

1.9 Remark. Under the assumptions of the previous theorem, for every function g :

R→ R,

Eg(X) =
∑

g(xk)P (X = xk) .

Indeed, it suffices to apply the theorem to the random variable g(X) (which is also

discrete).

Now we settle the continuous case.

1.10 Theorem. Let X be a continuous random variable and let g : R → R be a Borel

function. Then

Eg(X) =

∫ ∞
−∞

g(x)f(x)dx.

In particular,

EX =

∫ ∞
−∞

xf(x)dx.

Proof. It is enough to consider nonnegative functions g. When g = 1A for a Borel subset

A of R, we have Eg = E1A = P (X ∈ A) =
∫
A
f(x)dx =

∫
1A(x)f(x)dx =

∫
g(x)f(x)dx.

By linearity, the identity also holds for g being any linear combination of indicator

functions, that is for g being a simple function. By Lemma 1.3, any Borel function g is

a pointwise limit of a nondecreasing sequence of simple functions gn. Then the random

variable g(X) is the limit of gn(X) (which is also a monotone sequence). Thus we

can apply Lebesgue’s monotone convergence theorem to both sides, which finishes the

argument (to argue about
∫
gnf →

∫
gf , we in fact use a version of Lebesgue’s theorem

for Lebesgue’s integrals, which by their construction, has the same proof as Theorem

1.4).

1.4 Lebesgue’s dominated convergence theorem

We finish this chapter with one more limit theorem, quite useful in various applications;

we also show one of them.

1.11 Theorem (Lebesgue’s dominated convergence theorem). If (Xn) is a sequence

of random variables and X is a random variable such that for every ω ∈ Ω, we have

Xn(ω) −−−−→
n→∞

X(ω) and there is an integrable random variable Y such that |Xn| ≤ Y ,

then

E|Xn −X| −−−−→
n→∞

0.

In particular,

EXn −−−−→
n→∞

EX.
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Proof. Since |Xn| ≤ Y , taking n→∞ yields |X| ≤ Y . In particular, X is integrable as

well. By the triangle inequality,

|Xn −X| ≤ 2Y

and Fatou’s lemma (Theorem 1.5) gives

E(2Y ) = E lim inf(2Y − |Xn −X|) ≤ lim inf E(2Y − |Xn −X|)

= 2EY − lim supE|Xn −X|.

As a result, lim supE|Xn −X| ≤ 0, so

E|Xn −X| −−−−→
n→∞

0.

In particular, since by Theorem 1.7 (d),

|E(Xn −X)| ≤ E|Xn −X|,

we get that the left hand side goes to 0, that is EXn → EX.

As application, we show a necessary condition for the expectation of a nonegative

random variable to be finite, in terms of the rate of decay of its tail function. To motive

this condition, recall the following formula for the expectation: for a nonnegative random

variable X, we have

EX =

∫ ∞
0

P (X > t) dt. (1.2)

This can be justified as follows,

EX = E
∫ X

0

dt = E
∫ ∞

0

1t<Xdt =

∫ ∞
0

E1t<Xdt =

∫ ∞
0

P (X > t) dt,

where the second last equality follows from Fubini’s theorem (in this case, essentially

linearity of expectation; it would be clear, if the integral
∫∞

0
was a finite sum).

1.12 Remark. In particular, formula (1.2) justifies a desired fact that the expectation

is determined by distribution, that is if X and Y are random variables with the same

distribution (the same cumulative distribution functions), then EX = EY .

Since the integral
∫∞

1
dt
t is +∞, in view of the above formula we can suspect that if

EX <∞, then P (X > t) goes to 0 “faster” than 1
t . This is indeed true, and to show it,

we use Lebesgue’s dominated convergence theorem.

1.13 Theorem. If X is a nonnegative random variable such that EX <∞, then

tP (X > t) −−−→
t→∞

0.
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Proof. Fix a sequence tn going to ∞ as n→∞. Let Xn = tn1{X>tn}. We have

tnP (Xn > tn) = tnE1{X>tn} = EXn.

We want to show that EXn −−−−→
n→∞

0. Since Xn −−−−→
n→∞

0 at each ω and Xn ≤
X1{X>tn} ≤ X, which means that the sequence (Xn) is pointwise upperbounded

by the integrable random variable X, by Lebesgue’s dominated converge theorem,

limEXn = E(limnXn) = 0.
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2 Inequalities

2.1 Basic probabilistic inequalities

One of the simplest and very useful probabilistic inequalities is a tail bound by expec-

tation: the so-called Chebyshev’s inequality.

2.1 Theorem (Chebyshev’s inequality). If X is a nonnegative random variable, then

for every t > 0,

P (X ≥ t) ≤ 1

t
EX.

Proof. Since X ≥ X1{X≥t} ≥ t1{X≥t}, taking the expectation yields

EX ≥ Et1{X≥t} = tP (X ≥ t) .

There are several variants, easily deduced from Chebyshev’s inequality by mono-

tonicity of certain functions. For a nonnegative random variable X and t > 0, using the

power function xp, p > 0, we get

P (X ≥ t) = P (Xp ≥ tp) ≤ 1

tp
EXp. (2.1)

For a real-valued random variable X, every t ∈ R and λ > 0, using the exponential

function eλx, we have

P (X ≥ t) = P (λX ≥ λt) ≤ 1

eλt
EeλX . (2.2)

For a real-valued random variable X, every t ∈ R, using the square function x2 and

variance, we have

P (|X − EX| ≥ t) ≤ 1

t2
E|X − EX|2 =

1

t2
Var(X). (2.3)

Our next inequality, the so-called Hölder’s inequality, is a very effective inequality

used to factor out the expectation of a product

2.2 Theorem (Hölder’s inequality). Let p, q ≥ 1 be such that 1
p + 1

q = 1 (when p = 1,

then q =∞). For random variables X and Y , we have

E|XY | ≤ (E|X|p)1/p
(E|Y |q)1/q

.

In particular, when p = q = 2, this gives the Cauchy-Schwarz inequality

E|XY | ≤
√

E|X|2
√
E|Y |2.

Proof. The key ingredient is an elementary inequality for numbers.

Claim. For p, q ≥ 1 such that 1
p + 1

q = 1 and x, y ≥ 0 , we have

xy ≤ xp

p
+
yq

q
.
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Proof. By the concavity of the log function, we have

log

(
xp

p
+
yq

q

)
≥ 1

p
log xp +

1

q
log yq = log xy.

Setting x = |X|p

(E|X|p)1/p
, y = |Y |q

(E|Y |q)1/q , taking the expectation and simplifying yields the

desired inequality.

Recall that for p 6= 0, the pth moment of a random variable X, denoted ‖X‖p, is

defined as

‖X‖p = (E|X|p)1/p
.

Hölder’s inequality gives the following helpful variational formula for p ≥ 1.

‖X‖p = sup{EXY, Y is a random variable with E|Y |q ≤ 1}, (2.4)

where 1
p + 1

q = 1. To see that the supremum does not exceed the pth moment, simply

apply Theorem 2.2. To see the opposite inequality, consider Y = sgn(X)|X|p−1‖X‖−p/qp .

Then EXY = ‖X‖p, so in fact we can write “max ”instead of “sup ”in (2.4). Using this

linearisation, we can effortlessly establish the triangle inequality for the pth moment,

the so-called Minkowski’s inequality.

2.3 Theorem (Minkowski’s ineuality). Let p ≥ 1. Let X and Y be random variables.

Then

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Proof. Invoking (2.4),

‖X + Y ‖p = sup{E(X + Y )Z, E|Z|q ≤ 1}.

By linearity, E(X + Y )Z = EXZ + EY Z. Using that sup{f + g} ≤ sup f + sup g and

applying again (2.4) finishes the proof.

2.4 Remark. For every 0 < p < 1 Minkowski’s inequality fails (for instance, take X

and Y to be i.i.d. Ber(α)). Let us derive its analogue. Observe that for 0 < p < 1 and

every real numbers x, y, we have

|x+ y|p ≤ |x|p + |y|p. (2.5)

If x+ y = 0, the inequality is trivial. Otherwise, note that |t|p ≥ |t| for |t| ≤ 1, so using

this and the triangle inequality yields(
|x|
|x+ y|

)p
+

(
|y|
|x+ y|

)p
≥ |x|
|x+ y|

+
|y|
|x+ y|

=
|x|+ |y|
|x+ y|

≥ |x+ y|
|x+ y|

= 1.

13



Given two random variables, applying (2.5) for x = X(ω), y = Y (ω) and taking the

expectation gives

E|X + Y |p ≤ E|X|p + E|Y |p, p ∈ (0, 1]. (2.6)

In other words,

‖X + Y ‖pp ≤ ‖X‖pp + ‖Y ‖pp, p ∈ (0, 1]. (2.7)

Given a probability space (Ω,F ,P) and p > 0 define the Lp space of random vari-

ables having finite pth moment,

Lp = Lp(Ω,F ,P) = {X : Ω→ R, X is a random variable such that E|X|p <∞}.

Minkowski’s inequality and Remark 2.4 assert that Lp, p > 0 is a linear space. Moreover,

for p ≥ 1, the pth moment ‖ · ‖p is a norm on Lp meaning that

1) ‖X‖p = 0 if and only if X = 0 a.s.

2) ‖λX‖p = |λ|‖X‖p, X ∈ Lp, λ ∈ R (it is homogeneous)

3) ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p (it satisfies the triangle inequality)

(property 1) follows from Theorem 1.2 (c)). Consequently, d(X,Y ) = ‖X − Y ‖p is a

metric on Lp and is used to measure how close random variables are.

Another general and helpful inequality is about convex functions. Recall that a

function f : R → R is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for every

λ ∈ [0, 1] and x, y ∈ R. By induction, this can be extended to

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)

for every λ1, . . . , λn ≥ such that
∑n
i=1 λi = 1 and every x1, . . . , xn ∈ R. The weights λi

can of course be interpreted in probabilistic terms: if X is a random variable taking the

value xi with probability λi, then
∑
λixi = EX, whereas

∑
λif(xi) = Ef(X), so we

have

f(EX) ≤ Ef(X).

This generalises to arbitrary random variables and is called Jensen’s inequality.

2.5 Theorem (Jensen’s inequality). If f : R → R is a convex function and X is a

random variable such that both EX and Ef(X) exist, then

f(EX) ≤ Ef(X).

Proof. Suppose f is differentiable. Then by convexity, a tangent line at x0 is below the

graph, so

f(x) ≥ f(x0) + f ′(x0)(x− x0)

14



(which holds for every x0 and x). We set x = X, x0 = EX and take the expectation of

both sides to get

Ef(X) ≥ E [f(EX) + f ′(EX)(X − EX)] = f(EX) + f ′(EX)E(X − EX) = f(EX).

If f is not differentiable, this argument requires more work, but there is another concise

argument using the fact that a convex function is a pointwise supremum of a family of

linear functions – we skip the details)

2.6 Example. Let 0 < p < q. Take r = q
p and f(x) = |x|r which is convex. Thus for a

random variable X which is in Lq, using Jensen’s inequality, we have

E|X|q = Ef(|X|p) ≥ f(E|X|p) = (E|X|p)q/p,

equivalently,

‖X‖q ≥ ‖X‖p.

In other words, the function p 7→ ‖X‖p of moments of the random variable X is nonde-

creasing.

We finish this section with a concentration bound for weighted sums of independent

random signs. It is a nice application of exponential Chebyshev’s inequality (2.2) and

illustrates how it takes advantage of independence.

2.7 Theorem (Bernstein’s inequality). Let ε1, ε2, . . . , εn be independent random signs

and let a1, a2, . . . , an be real numbers. Then for every tt ≥ 0, we have

P

(∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
− t2

2
∑n
i=1 a

2
i

}
.

Proof. Let S =
∑
aiεi. Note that S is a symmetric random variable, that is S has the

same distribution as −S. Thus

P (|S| ≥ t) = P ({S ≥ t} ∪ {−S > t}) = P (S ≥ t) + P (−S ≥ t) = 2P (S ≥ t) .

Exponential Chebyshev’s inequality (2.2) for every λ > 0 yields

P (S ≥ t) = P
(
eλS ≥ eλt

)
≤ e−λtEeλS .

The last expectation can be computed thanks to independence,

EeλS = E
n∏
i=1

eλaiεi =

n∏
i=1

Eeλaiεi =

n∏
i=1

eλai + e−λai

2
.

Using an elementary inequality ex+e−x

2 ≤ ex2/2, x ∈ R, we get

EeλS ≤
n∏
i=1

eλ
2a2i /2 = eλ

2σ2/2,
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where σ2 =
∑
a2
i . Putting these together yields

P (S ≥ t) ≤ e−λt+λ
2σ2/2.

This holds for every λ > 0. Choose λ such that the right hand side is as small as

possible, that is λ = t/σ2, to get the assertion.

2.2 Application in analysis: Weierstrass’ theorem

Fix p ∈ [0, 1]. Let δ1, . . . , δn be i.i.d. Ber(p) random variables. Let Sn = δ1 + . . . + δn.

Using similar arguments as in Theorem 2.7, it can be shown that P (|Sn − ESn| > nt) ≤
2e−nt

2/4, that is the probability that Sn
n deviates from its expectation ESn

n = p by

more than a fixed t is exponentially small in n. This means that for large n, Sn
n is

approximately p (we say Sn
n concentrates around its expectation p). Guided by this

observation, we can give a constructive proof of Weierstrass’ theorem about uniform

approximation of continuous functions with polynomials.

2.8 Theorem (Weierstrass). Let f : [0, 1] → R be a continuous function. For every

ε > 0, there is a polynomial Q such that |f −Q| < ε on [0, 1].

Proof. Fix p ∈ [0, 1] and let Sn ∼ Bin(p, n) be as above. Define

Q(p) = Ef
(
Sn
n

)
=

n∑
k=0

(
n

k

)
f

(
k

n

)
pk(1− p)n−k

As explained, Sn
n concentrates around p for large n, thus it is reasonable to hope that

Q(p) will be approximately Ef(p) = f(p). Note that Q as a function of p is a polynomial

of degree n.

Now we show that for every ε > 0, there is n such that |Q(p) − f(p)| < ε for every

p ∈ [0, 1]. We have,

|Q(p)− f(p)| =
∣∣∣∣Ef (Snn

)
− f(p)

∣∣∣∣ ≤ E
∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣
= E

∣∣∣∣f (Snn
)
− f(p)

∣∣∣∣1{|Snn −p|≥n−1/4}

+ E
∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣1{|Snn −p|<n−1/4}.

The function f , as continuous on [0, 1], is bounded on [0, 1], say |f | ≤ M . Using this

and Chebyshev’s inequality (2.3), we get a good estimate for the first term,

E
∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣1{|Snn −p|≥n−1/4} ≤ 2MP
(∣∣∣∣Snn − p

∣∣∣∣ ≥ n−1/4

)
= 2MP

(∣∣∣∣Snn − E
Sn
n

∣∣∣∣ ≥ n−1/4

)
≤ 2M

1

n−1/2
Var

(
Sn
n

)
= 2Mn1/2np(1− p)

n2
≤ M

2n1/2
.
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(in the last inequality we used p(1− p) ≤ 1
4 ). This is less than ε/2 for n large enough.

To bound the second term, we use that f is uniformly continuous on [0, 1], that is,

there is δ such that |f(x)− f(y)| < ε/2 for all x, y ∈ [0, 1] such that |x− y| < δ. For n

large, such that n−1/4 < δ, we thus get

E
∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣1{|Snn −p|<n−1/4} < E
ε

2
1{|Snn −p|<n−1/4} ≤

ε

2
.

Combined with the previous bound, we get |Q− f | < ε/2 + ε/2 = ε.

2.3 Application in combinatorics: 1st and 2nd moment method

Simple probabilistic inequalities are of use in combinatorics. We mention two such appli-

cations in situations when we want to show that a nonnegative integer-valued random

variable (e.g. counting the number of some combinatorial objects) is zero with high

probability (1st moment method) and complementary, is positive with high probability

(2nd moment method).

Consider the following problem: we put m balls independently uniformly at random

into n boxes. How large does m have to be (with respect to n) so that with high

probability (w.h.p.) there are no empty boxes (that is, with probability going to 1 as n

goes to ∞)?

1st moment method

Claim. If X is a nonnegative integer-valued random variable, then

P (X > 0) ≤ EX.

This follows immediately from Chebyshev’s inequality (Theorem 2.1) because {X >

0} = {X ≥ 1}.
Let X be the number of empty boxes after putting m balls independently uniformly

at random into n boxes,

X =

n∑
i=1

Xi,

where Xi is the indicator random variable of the event “ith box being empty”. Clearly,

EX =

n∑
i=1

EXi = nEX1 = nP (X1 = 1) = n

(
1− 1

n

)m
.

If m ≥ (1 + ε)n log n, we get from 1− x ≤ e−x,

EX ≤ ne−m/n ≤ n−ε.

We have obtained that for every ε > 0, if m ≥ (1 + ε)n log n, then

P (there are empty boxes) = P (X > 0) ≤ EX ≤ n−ε,

equivalently

P (no empty boxes) ≥ 1− n−ε.
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2nd moment method

Claim. If X is a nonnegative integer-valued random variable, then

P (X > 0) ≥ (EX)2

EX2
.

This follows from the Cauchy-Schwarz inequality (Theorem 2.2) because

EX = EX1{X>0} ≤
√
EX2

√
E12
{X>0} =

√
EX2

√
P (X > 0).

Let us apply this again to X being the number of empty boxes. We have

EX2 = E
∑
i,j≤n

XiXj = nEX1 + n(n− 1)EX1X2 = n

(
1− 1

n

)m
+ n(n− 1)EX1X2

and

EX1X2 = P (X1 = X2 = 1) =

(
1− 2

n

)m
.

Thus

(EX)2

EX2
=

n2
(
1− 1

n

)2m
n
(
1− 1

n

)m
+ n(n− 1)

(
1− 2

n

)m ≥ n2
(
1− 2

n

)m
n
(
1− 1

n

)m
+ n2

(
1− 2

n

)m
=

1

1 + 1
n

(
1− 1

n

1− 2
n

)m
=

1

1 + 1
n

(
1 + 1

n−2

)m
> 1− 1

n

(
1 +

1

n− 2

)m
≥ 1− 1

n
e

m
n−2 .

If m ≤ (1− ε)n log n,

P (X > 0) ≥ 1− 1

n
e(1−ε) n

n−2 logn = 1− 1

n
e(1−ε) logne(1−ε) 2 logn

n−2 = 1− n−εe(1−ε) 2 logn
n−2 ,

so for large n we get

P (there are empty boxes) = P (X > 0) ≥ 1− 2n−ε.

Summarising, we have obtained a rather tight answer: m = n log n is the number of

balls at which the probability of having empty boxes transitions from being very large

to being very small as n goes to ∞.

2.4 Existence by averaging

Sometimes to prove existence of a combinatorial or geometric object, it suffices to aver-

age, that is take expectation. Specifically, if X : Ω→ R is a random variable such that
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EX > a for some a ∈ R, then there exists ω ∈ Ω such that X(ω) > a (otherwise, X ≤ a,

so EX ≤ a). Moreover, when X is discrete, if EX ≥ a, then X(ω) ≥ a for some ω ∈ Ω

(otherwise EX =
∑
x∈X(Ω) xP (X = x) <

∑
x∈X(Ω) aP (X = x) = a). To illustrate this,

we consider the following example.

2.9 Example. Let v1, . . . , vm be unit vectors in Rn. We show that there are signs

ε1, . . . , εm ∈ {−1, 1} such that

|ε1v1 + . . .+ εmvm| ≥
√
m.

Here and throughout, |x| =
√
x2

1 + . . .+ x2
n is the Euclidean norm of a vector x in Rn.

Let ε1, . . . , εm be i.i.d. random signs. Consider

X = |ε1v1 + . . .+ εmvm|2.

Using the linearity of the standard scalar product 〈x, y〉=
∑n
i=1 xiyi, x, y ∈ Rn (note

|x|2 =〈x, x〉), we have

EX = E

〈
m∑
i=1

εivi,

m∑
i=1

εivi

〉
= E

∑
i,j≤n

εiεj〈vi, vj〉


= E

 m∑
i=1

ε2
i 〈vi, vi〉+

∑
i6=j

εiεj〈vi, vj〉


=

m∑
i=1

(Eε2
i )|vi|2 +

∑
i 6=j

(Eεiεj)〈vi, vj〉.

Since |vi|2 = 1, Eε2
i = 1 and by independence, Eεiεj = EεiEεj = 0 for i 6= j, we obtain

EX = m.

Therefore, we can conclude that exist ω such that X(ω) ≥ m, equivalently, the choice

of signs ε1(ω), . . . , εm(ω) such that

|ε1(ω)v1 + . . .+ εm(ω)vm| ≥
√
m.
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3 Notions of convergence for random variables

3.1 Definitions and relationships

A sequence of random variables (Xn) converges to a random variable X

a) almost surely if P ({ω ∈ Ω, limn→∞Xn(ω) = X(ω)}) = 1, denoted Xn
a.s.−−−−→
n→∞

X

b) in probability if for every ε > 0, P (|Xn −X| > ε) −−−−→
n→∞

0, denoted Xn
P−−−−→

n→∞
0

c) in Lp, p > 0, if E|Xn −X|p −−−−→
n→∞

0, denoted Xn
Lp−−−−→

n→∞
X.

For instance, let Ω = {1, 2} and P (1) = P (2) = 1
2 , Xn(1) = −1/n, Xn(2) = 1/n.

We have

a) Xn
a.s.−−−−→
n→∞

0 because Xn(ω)→ 0 for every ω ∈ Ω,

b) Xn
P−−−−→

n→∞
0 because P (|Xn| > ε) = P

(
1
n > ε

)
→ 0,

c) Xn
Lp−−−−→

n→∞
0 because E|Xn|p = 2 1

2
1
np → 0.

We have two results, saying that the convergence in probability is the weakest among

the three.

3.1 Theorem. If a sequence of random variables (Xn) converges to X a.s. then it also

converges in probability, but in general not conversely.

Proof. By the definition of the limit of a sequence,

{lim
n
Xn = X} =

⋂
l≥1

⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

}
.

For any events Al, P
(⋂

l≥1Al

)
= 1 if and only if P (Al) = 1 for all l ≥ 1. Therefore,

Xn
a.s.−−−−→
n→∞

0 is equivalent to: for every l ≥ 1,

P

 ⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

} = 1.

By monotonicity with respect to N ,

P

 ⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

} = lim
N→∞

P

 ⋂
n≥N

{
|Xn −X| <

1

l

} .

Finally, observe that by the inclusion
⋂
n≥N

{
|Xn −X| < 1

l

}
⊂
{
|XN −X| < 1

l

}
, we

have

1 = lim
N→∞

P

 ⋂
n≥N

{
|Xn −X| <

1

l

} ≤ lim
N→∞

P
({
|XN −X| <

1

l

})
,
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so passing to the complements, for every l ≥ 1,

0 ≤ lim
N→∞

P
({
|XN −X| <

1

l

})
≤ 0.

Therefore, for every ε > 0, limN→∞ P ({|XN −X| ≥ ε}) = 0, that is Xn
P−−−−→

n→∞
0. The

following example of a sequence convergent in probability but not a.s. finishes the proof.

3.2 Example. Let Ω = [0, 1] and P (·) be the uniform probability measure. Let X1 = 1,

X2 = 1[0,1/2], X3 = 1[1/2,1], X4 = 1[0,1/4], X5 = 1[1/4,1/2], X6 = 1[1/2,3/4], X7 =

1[3/4,1], etc., X2n , X2n+1, . . . , X2n+1−1 are indicators of a wandering interval of length

2−n shifting to right by 2−n every increment of the index. We have

a) Xn
P−−−−→

n→∞
0 because for every ε > 0, P (|Xn| > ε) ≤ 2−k when 2k ≤ n < 2k+1, which

goes to 0 as n goes to ∞.

b) Xn
a.s9 0 because for every ω ∈ (0, 1), the sequence (Xn(ω)) contains infinitely many

0 and 1, so it is not convergent; moreover, if Xn
a.s−−−−→
n→∞

X for some random variable

X other than 0, then by Theorem 3.1, Xn
P−−−−→

n→∞
X and from the uniqueness of limits

in probability (homework!), X = 0 a.s., contradiction.

c) Xn
Lp−−−−→

n→∞
0 because E|Xn|p = 2−kp when 2k ≤ n < 2k+1, which goes to 0 as n goes

to ∞.

3.3 Theorem. If a sequence of random variables (Xn) converges to X in Lp for some

p > 0, then it also converges in probability, but in general not conversely.

Proof. By Chebyshev’s inequality (2.1),

P (|Xn −X| > ε) ≤ 1

εp
E|Xn −X|p −−−−→

n→∞
0,

so Xn
P−−−−→

n→∞
X. The following example of a sequence convergent in probability but not

in Lp finishes the proof.

3.4 Example. Let Ω = [0, 1] and P (·) be the uniform probability measure. Let Xn =

n1/p1[0,1/n]. We have

a) Xn
P−−−−→

n→∞
0 because for every ε > 0, P (|Xn| > ε) ≤ 1

n which goes to 0 as n goes to

∞

b) Xn
Lp9 0 because E|Xn|p = n 1

n = 1; moreover, if Xn
Lp−−−−→

n→∞
X for some random

variable X other than 0, then by Theorem 3.3, Xn
P−−−−→

n→∞
X and from the uniqueness

of limits in probability (homework!), X = 0 a.s., contradiction.
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c) Xn
a.s.−−−−→
n→∞

0 because for every ω > 0, the sequence Xn(ω) becomes eventually con-

stant 0.

Theorems (3.1), (3.3) and Examples 3.2, 3.4 can be summarised in the following

diagram.

a.s. in Lp

in P

\\

\ \

3.2 Properties

We record a few basic algebraic properties of the three notions of convergence (home-

work!).

1) If Xn converges to X a.s./in probability/in Lp and Yn converges to Y a.s./in proba-

bility/in Lp, then Xn + Yn converges to X + Y a.s./in probability/in Lp.

2) If Xn converges to X a.s./in probability and Yn converges to Y a.s./in probability,

then Xn · Yn converges to X · Y a.s./in probability.

3) If 0 < p < q and Xn converges to X in Lq, then Xn converges to X in Lp.

Immediately, 1) and 2) for the almost sure convergence follow from those statements

for sequences of numbers since the intersection of two events of probability 1 is of

probability 1.

Property 1) for Lp convergence follows from Minkowski’s inequality (Theorem 2.3)

and Property 3) follows from the monotonicity of moments (Example 2.6).

Establishing 1) and 2) directly from definition is cumbersome. Instead, we first prove

a convenient equivalent condition for convergence in probability in terms of almost sure

convergence. En route to this result, we need the Borel-Cantelli lemma, allowing to

deduce when only finitely many events occur with probability one.

3.5 Lemma. If A1, A2, . . . are events such that
∑∞
n=1 P (An) <∞, then

P (infinitely many An occur) = 0.

Proof. By the union bound,

P (infinitely many An occur) = P

 ⋂
N≥1

⋃
n>N

An

 = lim
N→∞

P

( ⋃
n>N

An

)

≤ lim
N→∞

∑
n>N

P (An) ,

and the right hand side is zero by the assumption.
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3.6 Theorem (Riesz). If a sequence (Xn) of random variables converges to a random

variable X in probability, then there is a subsequence (Xnk)k which converges to X

almost surely.

Proof. Since for every ε, P (|Xn −X| > ε) → 0, then we can find an index n1 such

that P
(
|Xn1 −X| > 2−1

)
< 2−1. By the same logic, we can find an index n2 > n1

such that P
(
|Xn2

−X| > 2−2
)
< 2−2, etc. We get a subsequence (Xnk)k such that

P
(
|Xnk −X| > 2−k

)
< 2−k for every k. Since the series

∑∞
k=1 P

(
|Xnk −X| > 2−k

)
converges, by the Borel-Cantelli lemma (Lemma 3.5), with probability 1 only finitely

many events Ak = {|Xnk − X| > 2−k} occur. When this happens, Xnk → X, so

Xnk −−−−→
k→∞

X.

3.7 Theorem. A sequence (Xn) of random variables converges to a random variable

X in probability if and only if every subsequence (Xnk)k contains a further subsequence

(Xnkl
)l which converges to X almost surely.

Proof. (⇒) It follows directly from Theorem 3.6.

(⇐) If (Xn) does not converge to X in probability, then there is ε > 0 such that

P (|Xn −X| > ε) 9 0. Consequently, there is ε′ > 0 and a subsequence (Xnk) for which

P (|Xnk −X| > ε) > ε′. By the assumption, there is a subsequence (Xnkl
)l convergent

to X almost surely, in particular, in probability, so P
(
|Xnkl

−X| > ε
)
→ 0. This

contradiction finishes the proof.

Going back to the algebraic properties 1) and 2) for convergence in probability, we

can easily justify them using that they hold for convergence almost surely. For 1), say

Sn = Xn + Yn does not converge in probability to S = X + Y . Then as in the proof of

Theorem 3.7, P (|Snk − S| > ε) > ε′ for some ε, ε′ > 0 and a subsequence (nk). Using

Theorem 3.7, there is a further subsequence (nkl) such that (Xnkl
)l converges to X

a.s. and a further subsequence (for simplicity, denote it the same) such that (Ynkl )l

converges to Y a.s.. Then Snkl
a.s.−−→ S, which contradicts P (|Snk − S| > ε) > ε′.
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4 Laws of large numbers

Suppose we roll a die n times and the outcomes are X1, X2, . . . , Xn. We expect that the

average X1+...+Xn
n should be approximately 3.5 (the expectation) as n becomes large.

Laws of large numbers establish that rigorously, in a fairly general situation.

Formally, we say that a sequence of random variables X1, X2, . . . satisfies the weak

law of large numbers if X1+...+Xn
n − EX1+...+Xn

n converges to 0 in probability and

the sequence satisfies the strong law of large numbers if the convergence is almost

sure. In particular, for a sequence of identically distributed random variables, we ask

whether X1+...+Xn
n −−−−→

n→∞
EX1. Consider two examples when no reasonable law of large

numbers holds and the opposite.

4.1 Example. Let X1, X2, . . . be i.i.d. standard Cauchy random variables. Then it can

be checked that S̄n = X1+...+Xn
n has the same distribution as X1, so S̄n is a “well spread

out” random variable which in no reasonable sense should be close to its expectation

(which in fact does not exists!), or any other constant.

4.2 Example. Let ε1, ε2, . . . be i.i.d. symmetric random signs, that is P (εi = ±1) = 1
2 .

Let S̄n = ε1+...+εn
n . By Bernstein’s inequality (Theorem 2.7), P

(
|S̄n| > t

)
≤ 2e−nt

2/2,

so the series
∑∞
n=1 P

(
|S̄n| > t

)
converges, so S̄n

a.s.−−−−→
n→∞

0 = Eε1 (check!). In other words,

the sequence (εn) satisfies the strong law of large numbers.

4.1 Weak law of large numbers

Using the second moment, we can easily get the weak law of large numbers for uncorre-

lated random variables with uniformly bounded variance.

4.3 Theorem (The L2 law of large numbers). Let X1, X2, . . . be random variables such

that E|Xi|2 <∞ for every i. If

1

n2
Var(X1 + . . .+Xn) −−−−→

n→∞
0,

then denoting Sn = X1 + . . .+Xn,

Sn
n
− E

Sn
n

L2−−−−→
n→∞

0.

In particular, this holds when the Xi are uncorrelated with bounded variance, that is

Var(Xi) ≤M for every i for some M .

Proof. We have

E
∣∣∣∣Snn − E

Sn
n

∣∣∣∣2 =
1

n2
E|Sn − ESn|2 =

1

n2
Var(X1 + . . .+Xn) −−−−→

n→∞
0.

Since

Var(X1 + . . .+Xn) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n

Cov(Xi, Xj),
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when the Xi are uncorrelated with bounded variance, we have

1

n2
Var(X1 + . . .+Xn) ≤ Mn

n2
=
M

n

which goes to 0 as n→∞.

Since convergence in L2 implies convergence in probability, the above is in fact

stronger then a weak law of large numbers.

4.4 Example. Let X be a random vector in Rn uniformly distributed on the cube

[−1, 1]n, that is X = (X1, . . . , Xn) with the Xi being i.i.d. uniform on [−1, 1]. The

assumptions of the above L2 law of large numbers are satisfied for X2
1 , X

2
2 , . . ., so in

particular
X2

1 + . . .+X2
n

n
− EX2

1
P−−−−→

n→∞
0

Note that EX2
1 = 1

3 . By definition, this convergence in probability means that for every

ε > 0,

P
(∣∣∣∣X2

1 + . . .+X2
n

n
− 1

3

∣∣∣∣ > ε

)
−−−−→
n→∞

0,

or equivalently,

P
(√

n(1/3− ε) <
√
X2

1 + . . .+X2
n <

√
n(1/3 + ε)

)
−−−−→
n→∞

1.

In words, a random point in a high dimensional cube is typically near the boundary of

the Euclidean ball centered at 0 of radius
√
n/3.

For completeness, we state without proof the weak law of large numbers for i.i.d.

sequences under optimal assumptions on integrability.

4.5 Theorem (The weak law of large numbers). If X1, X2, . . . are i.i.d. random vari-

ables such that tP (|X1| > t) −−−→
t→∞

0, then

X1 + . . .+Xn

n
− µn

P−−−−→
n→∞

0,

where µn = EX11{|X1|≤n}.

4.2 Strong law of large numbers

The main goal is to prove the following strong law of large numbers for i.i.d. sequences

with optimal assumptions on integrability, which is due to Kolmogorov.

4.6 Theorem (Kolmogorov’s strong law of large numbers). If X1, X2, . . . are i.i.d.

random variables such that E|X1| <∞, then

X1 + . . .+Xn

n

a.s.−−−−→
n→∞

EX1.
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To prove this, we first need to develop a few tools. The first one is a useful fact

about deducing convergence of averages of sequences of numbers from convergence of

series.

4.7 Lemma (Kronecker). Let (an) be a sequence of real numbers. If the series
∑∞
n=1

an
n

converges, then
a1 + . . .+ an

n
−−−−→
n→∞

0.

Proof. Let sn =
∑n
k=1

ak
k . Then s1 = a1, sn − sn−1 = an

n , n ≥ 2, so

a1 + . . .+ an
n

=
s1 + 2(s2 − s1) + 3(s3 − s2) + . . .+ n(sn − sn−1)

n

=
nsn − s1 − s2 − . . .− sn−1

n
.

Fix ε > 0. Since (sn) is a convergent sequence, it is bounded, say |sn| ≤M for every n,

and by the Cauchy criterion, there is N such that for n,m > N , we have |sn − sm| < ε.

Consequently, for n > N ,∣∣∣∣nsn − s1 − s2 − . . .− sn−1

n

∣∣∣∣
=

∣∣∣∣ (N + 1)sn − s1 − . . .− sN
n

+
sn − sN+1

n
+ . . .+

sn − sn−1

n

∣∣∣∣
≤ (2N + 1)M

n
+

(n−N − 1)ε

n

which is less than, say 2ε for n large enough.

The second tool we need is a classical maximal inequality (tail bound) for partial

sums of independent random random variables, due to Kolmogorov.

4.8 Theorem (Kolmogorov’s maximal inequality). If X1, X2, . . . , Xn are independent

random variables such that E|Xi|2 <∞ and EXi = 0 for every i, the for t > 0, we have

P
(

max
1≤k≤n

|X1 + . . .+Xk| ≥ t
)
≤ 1

t2
E(X1 + . . .+Xn)2.

Proof. Denote S0 = 0 and Sk = X1 + . . . + Xk, 1 ≤ k ≤ n. Fix t > 0 and consider the

events

Ak = {|Sj | < t for all j < k and |Sk| ≥ k}

(Ak means that j = k is the first index for a partial sum Sj to be at least t). These are

disjoint events and
n⋃
j=1

Aj = { max
1≤j≤n

|Sj | ≥ t}.

Moreover, note that the event Ak depends only on X1, . . . , Xk (hence is independent of

Xk+1, . . . , Xn). We have

ES2
n ≥ ES2

n1
⋃
Ak =

n∑
k=1

ES2
n1Ak ,
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where the equality holds because the Ak are disjoint. Writing Sn = Sk + (Sn − Sk) and

squaring yields

ES2
n ≥

n∑
k=1

(
ES2

k1Ak + 2ESk(Sn − Sk)1Ak + E(Sn − Sk)21Ak

)
Note that by independence, ESk(Sn−Sk)1Ak = E(Sk1Ak)(Sn−Sk) = ESk1Ak ·E(Sn−
Sk) = ESk1Ak · 0 = 0. Bounding the last term trivially by 0 thus gives

ES2
n ≥

n∑
k=1

ES2
k1Ak .

On the event Ak, |Sk| ≥ t, so ES2
k1Ak ≥ Et21Ak = t2P (Ak) and we finally obtain

ES2
n ≥

n∑
k=1

t2P (Ak) = t2P
(⋃

Ak

)
= t2P

(
max

1≤j≤n
|Sj | ≥ t

)
,

which is the desired inequality.

To use Kronecker’s lemma, we establish a convenient criterion for almost sure con-

vergence of series of independent random variables.

4.9 Lemma. Let X1, X2, . . . be independent random variables such that for every i,

EXi = 0 and E|Xi|2 <∞. If
∑∞
n=1 Var(Xi) converges, then

∑∞
n=1Xn converges a.s.

Proof. We want to show that P (
∑∞
n=1Xn diverges) = 0. By the Cauchy criterion,∑∞

n=1Xn diverges if and only if there is ε > 0 such that for every N ≥ 1 there are

n > m > N with |Xm + . . .+Xn| ≥ ε. Thus

P

( ∞∑
n=1

Xn diverges

)
= P

⋃
l≥1

⋂
N≥1

{
sup

n>m>N
|Xm + . . .+Xn| ≥

1

l

}
≤

N∑
l=1

P

 ⋂
N≥1

{
sup

n>m>N
|Xm + . . .+Xn| ≥

1

l

} .

It suffices that every term in the last sum is zero. Observe that by simple monotonicity

of the events involved,

P

( ⋂
N≥1

{
sup

n>m>N
|Xm + . . .+Xn| ≥

1

l

})

= lim
N→∞

P
(

sup
n>m>N

|Xm + . . .+Xn| ≥
1

l

)
= lim
N→∞

P

( ⋃
n>N

{
max

n>m>N
|Xm + . . .+Xn| ≥

1

l

})

= lim
N→∞

lim
n→∞

P
(

max
n>m>N

|Xm + . . .+Xn| ≥
1

l

)
.
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By Kolmogorov’s maximal inequality (Theorem 4.8),

P
(

max
n>m>N

|Xm + . . .+Xn| ≥
1

l

)
≤ 1

(1/l)2
Var(XN+1 + . . .+Xn) = l2

n∑
k=N+1

Var(Xk),

which after taking consecutively the limits n → ∞ and then N → ∞ gives an upper

bound by limN→∞
∑∞
k=N+1 Var(Xk) = 0 because the series

∑
Var(Xk) converges by

the assumption. This finishes the proof.

Now we are ready to prove Kolmogorov’s strong law of large numbers (Theorem 4.6).

To give a good picture of our strategy, we first show how to quickly prove it under a

stronger assumption of the finite second moment.

4.10 Remark. Let, as in Theorem 4.6, X1, X2, . . . be i.i.d. random variables such that

E|X1|2 < ∞ (which clearly implies that E|X1| < ∞). We would like to show that

X1+...+Xn
n

a.s.−−−−→
n→∞

EX1. This is equivalent to

(X1 − EX1) + . . .+ (Xn − EXn)

n

a.s.−−−−→
n→∞

0.

By Kronecker’s lemma (Lemma 4.7), it is enough to show that

∞∑
n=1

Xn − EXn

n
converges a.s.

By Lemma 4.9, it is enough to show that

∞∑
n=1

Var

(
Xn − EXn

n

)
<∞.

This is clear because Var
(
Xn−EXn

n

)
= 1

n2 Var(Xn) = 1
n2 Var(X1).

Proof of Theorem 4.6. Consider the truncated random variables

Yn = Xn1{|Xn|≤n}.

We have
X1 + . . .+Xn

n
− EX1 = Rn + Sn + Tn,

where

Rn =
(X1 − Y1) + . . .+ (Xn − Yn)

n
,

Sn =
(Y1 − EY1) + . . .+ (Yn − EYn)

n
,

Tn =
EY1 + . . .+ EYn

n
− EX1.

We shall show that each of these sequences converges to 0 a.s. and this will finish the

proof.
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Sequence (Tn). Here we use a simple fact that for a sequence of numbers (an), if

limn an = a, then limn
a1+...+an

n = a. Let an = EYn. Since the Xi are identically

distributed,

an = EXn1{|Xn|≤n} = EX11{|X1|≤n}

By Lebesgue’s dominated convergence theorem (|X11{|X1| ≤ n}| is dominated by |X1|,
which is integrable),

lim
n
an = lim

n
EX11{|X1|≤n} = E(X1 lim

n
1{|X1|≤n}) = EX1.

This shows that Tn → 0.

Sequence (Rn). Let An = {Xn 6= Yn} = {|Xn| > n}. Since

∞∑
n=1

P (An) =

∞∑
n=1

P (|Xn| > n) =

∞∑
n=1

P (|X1| > n) ≤ E|X1|,

by the Borel-Cantelli lemma (Lemma 3.5), with probability 1 only finitely many An

occur. If that is the case, then the sequences (Xn(ω)) and (Yn(ω) are eventually the

same, which implies that

Rn(ω) =
(X1(ω)− Y1(ω)) + . . .+ (Xn(ω)− Yn(ω))

n
−−−−→
n→∞

0.

This shows that Rn
a.s.−−−−→
n→∞

0.

Sequence (Sn). We proceed as in Remark 4.10: by Kronecker’s lemma and Lemma 4.9

it suffices to show that ∞∑
n=1

Var

(
Yn − EYn

n

)
<∞.

Note that

Var(Yn) ≤ EY 2
n = EX2

n1{|Xn|≤n} = EX2
11{|X1|≤n}

=

n∑
k=1

EX2
11{k−1<|X1|≤k}

≤
n∑
k=1

kE|X1|1{k−1<|X1|≤k}.

Changing the order of summation and using that
∑
n=k

1
n2 ≤ 2

k , we obtain

∞∑
n=1

Var

(
Yn − EYn

n

)
=

∞∑
n=1

1

n2
Var (Yn)

≤
∞∑
n=1

1

n2

n∑
k=1

kE|X1|1{k−1<|X1|≤k}

=

∞∑
k=1

( ∞∑
n=k

1

n2

)
kE|X1|1{k−1<|X1|≤k}

≤ 2

∞∑
k=1

E|X1|1{k−1<|X1|≤k} = 2E|X1|

which is finite.
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We finish this chapter with an application of the strong law of large numbers to

computation of certain integrals.

4.11 Example. Let In =
∫ 1

0
. . .
∫ 1

0
x3
1+...+x3

n

x1+...+xn
dx1 . . . dxn. We shall find limn In.

Let X1, . . . , Xn be i.i.d. random variables uniform on [0, 1]. The density of the vector

X = (X1, . . . , Xn) is f(x) =
∏n
i=1 1[0,1](xi), so

In = E
X3

1 + . . .+X3
n

X1 + . . .+Xn
= E

X3
1+...+X3

n

n
X1+...+Xn

n

.

By the strong law of large numbers (Theorem 4.6),

X1 + . . .+Xn

n

a.s.−−−−→
n→∞

EX1 =
1

2

and similarly
X3

1 + . . .+X3
n

n

a.s.−−−−→
n→∞

EX3
1 =

1

4
.

Thus

X3
1 + . . .+X3

n

X1 + . . .+Xn
=

X3
1+...+X3

n

n
X1+...+Xn

n

a.s.−−−−→
n→∞

1/4

1/2
=

1

2
.

Moreover, we have a simple bound
∣∣∣X3

1+...+X3
n

X1+...+Xn

∣∣∣ ≤ 1 (because the 0 ≤ Xi ≤ 1), so by

Lebesgue’s dominated convergence theorem,

lim
n→∞

In = lim
n→∞

E
X3

1 + . . .+X3
n

X1 + . . .+Xn
= E lim

n→∞

X3
1 + . . .+X3

n

X1 + . . .+Xn
= E

1

2
=

1

2
.
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5 Central limit theorem

Let X1, X2, . . . be i.i.d. random variables with E|X1|2 <∞. By the strong law of large

numbers,

Yn =
X1 + . . .+Xn

n
− EX1

converges to 0 a.s. By our (too generous to get this convergence) assumption, we can

compute

Var(Yn) =
Var(X1 + . . .+Xn)

n2
=
nVar(X1)

n2
=

Var(X1)

n
,

so Yn concentrates around its expectation, which is 0 and in a sense it is not surprising

that Yn goes to 0. What happens if we zoom in, that is rescale appropriately so that the

variance of Yn is fixed (when fluctuations of Yn have a fixed size, as opposed to decaying

like 1/n as earlier)? Consider

Zn =
Yn√

Var(Yn)
=
√
n

1√
Var(X1)

(
X1 + . . .+Xn

n
− EX1

)
which has variance 1 for all n. What “limit distribution” does Zn have as n → ∞
(if any)? This is addressed by the central limit theorem which says that the limiting

distribution exists and is Gaussian! (If it exists and is universal, that is the same for all

i.i.d. sequences, then it has to be Gaussian because when the Xi are standard Gaussian,

Zn is also standard Gaussian.) To make things rigorous, first we need to develop a notion

of convergence in distribution, the most important type of convergence in probability

theory.

We say that a sequence of random variables (Xn) converges to a random variable X

in distribution, denoted Xn
d−−−−→

n→∞
X, if

FXn(t) −−−−→
n→∞

FX(t) for every point of continuity of FX .

Here as usual, FY (t) = P (Y ≤ t) is the distribution function of a random variable

Y . Note that this notion of convergence only depends on the distribution functions

of random variables involved and not on their particular realisations as functions on a

probability space (in fact, they can be defined on different probability spaces). This

is in strong contrast to, for instance almost sure convergence – see also Theorem 5.4.

Particularly, if Xn
d−−−−→

n→∞
X and say X ′ is another random variable with the same

distribution as X (i.e. FX′ = FX), then we can also write Xn
d−−−−→

n→∞
X ′.

5.1 Theorem (Central limit theorem). Let X1, X2, . . . be i.i.d. random variables with

E|X1|2 <∞. Then the sequence (Zn) of normalised sums

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)

converges in distribution to a standard Gaussian random variable.
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To give a complete proof of this fundamental limit theorem, we shall first study

properties of convergence in distribution and then build up a tool, borrowing ideas from

Fourier analysis, of so-called characteristic functions of random variables which captures

the convergence in distribution and easily allows to take advantage of independence.

5.1 Convergence in distribution

We begin with two simple examples.

5.2 Example. Let ε be a symmetric random sign. Consider the sequence (Xn)∞n=1 =

(ε,−ε, ε,−ε, . . .). Since −ε has the same distribution as ε, we have FXn = Fε for

every n, so Xn
d−→ ε. On the other hand, the sequence (Xn) does not converge in

probability, for suppose Xn
P−→ X for some random variable X. Then for n,m large

enough P (|Xn −Xm| > 1) ≤ P (|Xn −X| > 1/2) + P (|X −Xm| > 1/2) ≤ 1/4. Taking

n andm of different parity, we get P (|Xn −Xm| > 1) = P (|2ε| > 1) = 1, a contradiction.

It turns out that convergence in probability implies convergence in distribution, but we

will be able to show this a bit later.

5.3 Example. Let X be a random variable and consider the sequence Xn = X + 1
n .

For any reasonable definition of “convergence in distribution” we should have Xn → X.

Note that for a fixed t ∈ R, we have

limFXn(t) = limP (Xn ≤ t) = limP
(
X ≤ t− 1

n

)
= F (t−),

which is F (t) if and only if t is a continuity point of F . This explains why in the

definition we make this exclusion.

We have a curious relationship between convergence in distribution and almost sure

convergence.

5.4 Theorem. If a sequence of random variables (Xn) converges in distribution to a

random variable X, then there are random variables Yn and Y such that Yn has the

same distribution as Xn, Y has the same distribution as X and Yn → Y a.s.

Proof. Let Fn = FXn be the distribution function of Xn and let F = FX be the dis-

tribution function of X. Let Ω = (0, 1), F be the Borel subsets of (0, 1) and P (·) be

uniform. For every x ∈ (0, 1) define the “inverse” distribution functions

Yn(x) = sup{y ∈ R, Fn(y) < x}

and similarly

Y (x) = sup{y ∈ R, F (y) < x}.

By the construction, FYn = Fn and FY = F . Note that Yn and Y are nondecreasing

right-continuous functions whose only discontinuities are jumps which happen at at most
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countably many points. If we let Ω0 to be the set of points where Y is continuous, then

P (Ω0) = 1. Fix x ∈ Ω0. We claim that Yn(x) → Y (x), which then gives Yn → Y a.s.

We have

1. lim inf Yn(x) ≥ Y (x), for suppose y < Y (x) is a continuity point of F ; then

F (y) < x (since x ∈ Ω0), so for large n, Fn(y) < x and by the definition of the

supremum, y ≤ Yn(x). Taking lim inf, we get lim inf Yn(x) ≥ y for every y < Y (x),

so lim inf Yn(x) ≥ Y (x).

2. Y (x) ≥ lim supYn(x), for suppose y > Y (x) is a continuity point of F ; then

F (y) > x, so for large n, Fn(y) > x which gives y ≥ Yn(x). Taking lim sup finishes

the argument.

We show an equivalent definition of convergence in distribution in terms of bounded

continuous test functions.

5.5 Theorem. A sequence (Xn) of random variables converges in distribution to a

random variable X if and only if for every bounded continuous function g : R→ R, we

have Eg(Xn)→ Eg(X).

Proof. (⇒) Let Yn and Y be as in Theorem 5.4, Yn
a.s.−−→ Y . Since g is continuous,

we also have g(Yn)
a.s.−−→ g(Y ), so by Lebesgue’s dominated convergence theorem (g is

bounded),

Eg(Xn) = Eg(Yn)→ Eg(Y ) = Eg(X)

(recall Remark 1.12).

(⇐) For parameters t ∈ R and ε > 0 define the continuous bounded functions

gt,ε(x) =


1, x ≤ t,

1− x−t
ε , t < x ≤ t+ ε,

0, x > t+ ε.

The idea is that these functions are continuous approximations of indicator functions.

We have, 1{x≤t} ≤ gt,ε(x) ≤ 1{x≤t+ε}. Consequently,

lim supP (Xn ≤ t) = lim supE1{Xn≤t} ≤ lim supEgt,ε(Xn)

= Egt,ε(X) ≤ E1{X≤t+ε} = P (X ≤ t+ ε) .

Letting ε→ 0 gives

lim supFXn(t) ≤ FX(t).
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On the other hand, since

lim inf P (Xn ≤ t) = lim inf E1{Xn≤t} ≥ lim inf Egt−ε,ε(Xn)

= Egt−ε,ε(X) ≥ E1{X≤t−ε} = P (X ≤ t− ε)

after taking ε→ 0, we get

lim inf FXn(t) ≥ FX(t−).

If t is a point of continuity of FX , FX(t−) = FX(t) and we obtain limFXn(t) = FX(t),

which means Xn
d−→ X.

Being able to extract convergent subsequences often helps. Since distribution func-

tions are bounded, this is always possible, as stated in the next theorem.

5.6 Theorem (Helly’s selection theorem). If (Fn)n is a sequence of distribution func-

tions, then there is a subsequence (Fnk)k and a right-continuous nondecreasing function

F : R→ [0, 1] such that Fnk(t) −−−−→
k→∞

F (t) for every point t of continuity of F .

5.7 Remark. In general, F may not be a distribution function – it may happen that

F (∞) < 1 or F (−∞) > 0.

Proof. To construct the desired subsequence we use a standard diagonal argument. Let

q1, q2, . . . be a sequence of all rationals. Since the sequence Fn(q1) is bounded, it has a

convergent subsequence, say F
n
(1)
k

(q1) converges to G(q1). Then we look at the sequence

F
n
(1)
k

(q2) which is bounded, so it has a convergent subsequence, say F
n
(2)
k

(q2) converges

to G(q2), etc. We obtain subsequences (n
(l)
k ) such that (n

(l+1)
k ) is a subsequence of

(n
(l)
k ) and F

n
(l)
k

(ql) converges to G(ql). Choose the diagonal subsequence nk = n
(k)
k .

Then F
n
(k)
k

(ql) converges to G(ql) for every l. The function G : Q → [0, 1] obtained as

the limit is nondecreasing. We extend it to the nondecreasing function F : R→ [0, 1] by

F (x) = inf{G(q), q ∈ Q, q > x}, x /∈ Q.

The function F , as monotone, satisfies F (x−) ≤ F (x) ≤ F (x+) for every x. At the

points x, where F is not right-continuous, we modify it and set F (x) = F (x+) (there

are at most countably many such points).

It remains to check that Fnk converges to F at its points of continuity. Let x be

such a point and let q, r be rationals such that q < x < r. Then

F (q) = G(q) = lim inf
k

Fnk(q) ≤ lim inf
k

Fnk(x)

≤ lim sup
k

Fnk(x) ≤ lim sup
k

Fnk(r) = G(r) = F (r).

Letting q, r → x, we get F (q), F (r) → F (x), so lim infk Fnk(x) = lim supk Fnk(x) =

F (x).
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To capture when the limiting function is a distribution function of a random variable,

we need the notion of tightness. A sequence (Xn) of random variables is tight if for

every ε > 0, there is M > 0 such that P (|Xn| ≤M) > 1− ε for every n.

5.8 Remark. If there is δ > 0 such that C = supn E|Xn|δ < ∞, then the sequence

(Xn) is tight. Indeed, by Chebyshev’s inequality,

P (|Xn| > M) ≤M−δE|Xn|δ ≤
C

M δ

which is less than ε for M large enough.

The main result of this section is the following compactness type result. It gives a

necessary and sufficient condition for existence of convergent subsequences in distribu-

tion in terms of tightness.

5.9 Theorem. A sequence of random variables (Xn) is tight if and only every subse-

quence (Xnk)k has a subsequent (Xnkl
)l which converges in distribution to some random

variable.

Proof. Let Fn be the distribution function of Xn.

(⇒) By Helly’s theorem applied to (Fnk)k, there is a subsequence (Fnkl )l which

converges to a right-continuous nondecreasing function F : R → [0, 1] pointwise at the

points of continuity of F . It remains to check that F is a distribution function, that

is F (−∞) = 0 and F (+∞) = 1. By tightness, there is M > 0 such that Fn(M) −
Fn(−M) > 1 − ε, for every n and we can further arrange that −M and M are points

of continuity of F . Taking n = nkl and letting l→∞, we get F (M)− F (−M) ≥ 1− ε.
Since ε is arbitrary and F is monotone, this yields F (−∞) = 0 and F (+∞) = 1.

(⇐) If (Xn) is not tight, there is ε > 0 and an increasing sequence of indices nk

such that P (|Xnk | ≤ k) ≤ 1 − ε for every k. By the assumption, Xnkl

d−−−→
l→∞

X. Let

x < 0 < y be points of continuity of FX . Then

FX(y)− FX(x) = lim
l

(Fnkl (y)− Fnkl (x)) ≤ lim sup
l

(Fnkl (kl)− Fnkl (−kl)) ≤ 1− ε.

Taking x→ −∞ and y →∞ gives 1 ≤ 1− ε, a contradiction.

5.2 Characteristic functions

The characteristic function of a random variable X is the function φX : R → C

defined as

φX(t) = EeitX , t ∈ R.

(For complex valued random variables, say Z = X + iY , we of course define EZ =

EX + iEY .) Since eix = cosx + i sinx, x ∈ R is a complex number of modulus 1, eitX

is a bounded random variable hence its expectation exists, so φX is well-defined on R.
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For starters, two examples. For a symmetric random sign ε,

φε(t) = Eeitε =
eit + e−it

2
= cos t.

For an exponential random variable X with parameter λ,

φX(t) = EeitX =

∫ ∞
−∞

eitxfX(x)dx =

∫ ∞
0

λe(it−λ)xdx = λ
e−λxeitx

it− λ

∣∣∣∣∣
∞

0

=
λ

λ− it

(when taking the limit x→∞, we use that eitx is bounded).

Basic properties of characteristic functions

We gather several basic properties in the following theorem.

5.10 Theorem. Let X be a random variable with characteristic function φX . Then

(i) |φX(t)| ≤ 1, t ∈ R,

(ii) φX(0) = 1,

(iii) φX is uniformly continuous,

(iv) if E|X|n <∞ for some positive integer n, then the nth derivative φ
(n)
X exists, equals

φ
(n)
X (t) = inEXneitX and is uniformly continuous.

Proof. (i) and (ii) are clear because |φX(t)| = |EeitX | ≤ E|eitX | = 1 and φX(0) =

Eei·0·X = 1.

(iii) For every t, h ∈ R,

|φX(t+ h)− φX(t)| = |EeitX(eihX − 1)| ≤ E|eihX − 1| −−−→
h→0

0

where the limit is justified by Lebesgue’s dominated convergence theorem (|eihX−1| → 0

pointwise and the sequence is bounded by 2). This implies the continuity of φX at t.

The continuity is uniform because the bound does not depend on t.

(iv) Fix n such that E|X|n <∞. First, we inductively show that for 0 ≤ k ≤ n,

φ
(k)
X (t) = E(iX)keitX .

This is clear for k = 0 and for k < n, inductively, we have

φ
(k+1)
X (t) = lim

h→0

φ
(k)
X (t+ h)− φ(k)

X (t)

h
= lim
h→0

E
[
(iX)keitX

eihX − 1

h

]
= E

[
(iX)keitX lim

h→0

eihX − 1

h

]
.

The last equality is justified by Lebesgue’s dominated convergence theorem because∣∣∣∣(iX)keitX
eihX − 1

h

∣∣∣∣ ≤ |X|k|X| = |X|k+1
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and by the assumption E|X|k+1 <∞; we also used that for t ∈ R, |eit − 1| ≤ |t| which

can be justified as follows

|eit − 1| =
∣∣∣∣1i
∫ t

0

eixdx

∣∣∣∣ ≤ ∫ t

0

|eix|dx = t

when t ≥ 0 and similarly for t < 0. Finally, limh→0
eihX−1

h = iX which finishes the

inductive argument. Having the formula, uniform continuity follows as in (iii).

5.11 Example. Let X be a standard Gaussian random variable. We have,

φX(t) =

∫
R
eitxe−x

2/2 dx√
2π

= e−t
2/2

∫
R
e−(x−it)2/2 dx√

2π
= e−t

2/2,

where the last step would need proper justification (e.g., integrating along an appropriate

contour and using
∫
R e
−x2/2 dx√

2π
). Instead, we use Theorem 5.10 (iv),

φ′X(t) = iEXeitX = −EX sin(tX) + iEX cos(tX).

Since X is symmetric and cos is even, EX cos(tX) = 0 and integrating by parts,

φ′X(t) = −EX sin(tX) = −
∫
x sin(tx)e−x

2/2 dx√
2π

=

∫
sin(tx)(e−x

2/2)′
dx√
2π

= −t
∫

cos(tx)e−x
2/2 dx√

2π

which is −tE cos(tX) = −tEeitX = −tφX(t) (by the symmetry of X, again, E sin(tX) =

0), so φ′X(t) = −tφX(t). That is, φ′X(t) = −tφX(t), equivalently, (et
2/2φX(t))′ = 0

which finally gives et
2/2φX(t) = φX(0) = 1.

If Y ∼ N(µ, σ2), then Y = µ+ σX and we thus get

φY (t) = Eeit(µ+σX) = eitµEei(tσ)X = eitµ−σ
2t2/2. (5.1)

Note a simple but very powerful observation involving independence.

5.12 Theorem. If X and Y are independent random variables, then

φX+Y = φX · φY .

Proof. Clearly, Eeit(X+Y ) = EeitXeitY = EeitXEeitY .

Two crucial properties of characteristic functions are: 1) they determine the distri-

bution 2) they capture convergence in distribution. Specifically, we have the following

two theorems.

5.13 Theorem. Random variables X and Y have the same distribution (that is, FX =

FY ) if and only if they have the same characteristic functions φX = φY .

5.14 Theorem (Lévy’s continuity theorem). Let (Xn) be a sequence of random variables

such that for every t ∈ R, φXn(t) −−−−→
n→∞

φ(t) for some function φ : R → C which is

continuous at t = 0. Then there is a random variable X such that φ = φX and Xn
d−→ X.
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5.15 Remark. The converse also holds: if Xn
d−→ X, then φXn(t) −→ φX(t) for every

t ∈ R. Indeed, by Theorem 5.5, E sin(tXn) → E sin(tX) and the same for the cos

function, so φXn(t) = E cos(tXn) + iE sin(tXn)→ φX(t).

5.16 Example. In Levy’s theorem the continuity assumption is necessary. Let G be

a standard Gaussian random variable and consider the sequence Xn = nG. We have

φXn(t) = φnG(t) = φG(nt) = e−n
2t2/2, so

φXn(t)→

0, t 6= 0,

1, t = 1.

The limiting function is discontinuous at 0. The sequence Xn does not converge in

distribution because FXn(t) = P (G ≤ t/n) → P (G ≤ 0) = 1/2, but the limit is not a

distribution function (an alternative argument: by Remark 5.15, if Xn
d−→ X, then φXn

would converge to a characteristic function which is continuous).

We prove these results in the next two subsections.

Inversion formulae

En route to proving Theorem 5.13, we establish an inversion formula, quite standard in

Fourier analysis. We first need a lemma.

5.17 Lemma. For two independent random variables X and Y and every t ∈ R, we

have

Ee−itY φX(Y ) = EφY (X − t).

Proof. Changing the order of taking expectation, we have

EY e−itY φX(Y ) = EY e−itY EXeiY X = EX,Y eiY (X−t) = EXEY eiY (X−t) = EXφY (X − t).

5.18 Theorem (Inversion formula). For a random variable X, at every point x of

continuity of its distribution function FX , we have

FX(x) = lim
a→∞

∫ x

−∞

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt.

Proof. Let G be a standard Gaussian random variable, independent of X. For a > 0,

consider Xa = X + a−1G. Since Xa converges pointwise to X as a→∞, by Lebesgue’s

dominated convergence theorem Eg(Xa) → Eg(X) for every bounded continuous func-

tion g, thus Xa
d−→ 0 as a→∞ (Theorem 5.5). Consequently, for every continuity point

x of FX , we have

FX(x) = lim
a→∞

FXa(x).
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Let us find the distribution function of Xa. We have,

FXa(x) = P
(
X + a−1G ≤ x

)
= EX,G1{X+a−1G≤x} = EXEG1{X+a−1G≤x}

= EXP
(
X + a−1G ≤ x

)
.

For any y ∈ R, the density of y + a−1G at t is a√
2π
e−a

2(t−y)2/2, thus

FXa(x) = EX
∫ x

−∞

a√
2π
e−a

2(t−X)2/2dt =

∫ x

−∞
EX

a√
2π
e−a

2(t−X)2/2dt.

Note that e−a
2s2/2 is the characteristic function of aG at s (Example 5.11), so by Lemma

5.17,

EX
a√
2π
e−a

2(t−X)2/2 =
a√
2π

EXφaG(X − t) =
a√
2π

Ee−itaGφX(aG).

Writing this explicity using the density of aG yields

a√
2π

Ee−itaGφX(aG) =
a√
2π

1√
2πa

∫ ∞
−∞

e−itsφX(s)e−
s2

2a2 ds

=
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds.

Plugging this back,

FXa(x) =

∫ x

−∞

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt,

which combined with FX(x) = lima→∞ FXa(x) remarked earlier finishes the proof.

Now we can prove that characteristic functions determine distribution.

Proof of Theorem 5.13. By Theorem 5.18, FX(x) = FY (x) for every x ∈ R \ B, where

B is the union of the discontinuity points of FX and the discontinuity points of FY . For

x ∈ B, take xn > x such that xn ∈ R \B and xn → x (it is possible since B is at most

countable). Then FX(xn) = FY (xn) and by right-continuity, FX(x) = FY (x).

The inversion formula from Theorem 5.18 gives us several other interesting corollar-

ies. Since the characteristic function determines distribution, it should be possible to

reconstruct densities from characteristic functions.

5.19 Theorem. If X is a random variable such that
∫
R |φX | <∞, then X has density

f given by

f(x) =

∫ ∞
−∞

1

2π
e−isxφX(s)ds

which is bounded and uniformly continuous.

5.20 Remark. If X is a continuous random variable with density f , then clearly

φX(t) =

∫ ∞
−∞

eitsf(s)ds

The two formulae have the same form!
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Proof. For two continuity points x < y of FX , we have from Theorem 5.18,

FX(y)− FX(x) = lim
a→∞

∫ y

x

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt.

Since |e−istφX(s)e−
s2

2a2 | ≤ |φX(s)|, that is the integrand is dominated by |φX | which is

integrable on [x, y]× R, by Lebesgue’s dominated convergence theorem,

FX(y)− FX(x) =

∫ y

x

(
1

2π

∫ ∞
−∞

e−istφX(s)ds

)
dt

which gives that X has density given by the promised formula. The rest follows as for

characteristic functions (recall the proof of Theorem 5.10 (iii)).

5.21 Corollary. If X is a continuous random variable with density fX and character-

istic function φX which is nonnegative, then
∫
R φX <∞ if and only if f is bounded.

Proof. If
∫
R φX < ∞, then by Theorem 5.19, f is bounded. Conversely, let as in the

proof of Theorem 5.19, G be a standard Gaussian random variable independent of X.

Then the density of X + a−1G at x equals∫
R
fX(x− y)fa−1G(y)dy.

On the other hand, it equals d
dxFXa(x) and from the last identity in the proof of Theorem

5.19, this becomes
1

2π

∫ ∞
−∞

e−isxφX(s)e−
s2

2a2 ds.

For x = 0 we thus get

1

2π

∫ ∞
−∞

φX(s)e−
s2

2a2 ds =

∫
R
fX(−y)fa−1G(y)dy.

If fX is bounded by, say M , we obtain that the right hand side is bounded by M , so

1

2π

∫ ∞
−∞

φX(s)e−
s2

2a2 ds ≤M.

As a→∞, by Lebesgue’s monotone convergence theorem, the left hand side converges

to 1
2π

∫∞
−∞ φX , which proves that

∫
R φX ≤ 2πM .

5.22 Example. Let X1, X2, . . . , Xn be i.i.d. random variables uniform on [−1, 1]. Then

X1 + . . .+Xn for n ≥ 2 has density

f(x) =
1

2π

∫ ∞
−∞

cos(tx)

(
sin t

t

)n
dt.

Indeed, note that φXi(t) = sin t
t , so φX1+...+Xn(t) =

(
sin t
t

)n
which is integrable for n ≥ 2

and the formula follows from Theorem 5.19.

We finish with two Fourier analytic identities.
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5.23 Theorem (Parseval’s identities). If X and Y are continuous random variables

with densities fX and fY , then

(i)
∫
R |φX |

2 <∞ if and only if
∫
R f

2
X <∞ and then∫
R
f2
X =

1

2π

∫
R
|φX |2,

(ii) if
∫
R f

2
X <∞ and

∫
R f

2
Y <∞, then∫

R
fXfY =

1

2π

∫
R
φXφY .

Proof. (i) Let X ′ be an independent copy of X. Consider X̃ = X −X ′. We have,

φX̃(t) = φX(t)φ−X′(t) = φX(t)φ−X(t) = φX(t)φX(t) = |φX(t)|2.

On the other hand, X̃ is continuous with density given by convolution,

fX̃(y) = (fX ? f−X)(y) =

∫
R
fX(x)f−X(y − x)dx.

It can be seen from here that if
∫
f2
X <∞, then by the Cauchy-Schwarz inequality, fX̃

is bounded. Then by Corollary 5.21, φX̃ = |φX |2 is integrable. Conversely, if |φX |2 is

integrable, then from Theorem 5.19 applied to X̃, we get

fX̃(0) =
1

2π

∫
R
φX̃ =

1

2π

∫
R
|φX |2.

Since

fX̃(0) = (fX ? f−X)(0) =

∫
R
fX(x)f−X(0− x)dx =

∫
R
fX(x)fX(x)dx =

∫
R
f2
X ,

we get that
∫
f2
X = 1

2π

∫
|φX |2. In particular, f2

X is integrable.

(ii) Apply (i) to the density fX+fY
2 .

Characteristic functions and convergence in distribution

Our goal is to prove Theorem 5.14. We start with a lemma that will help us get tightness.

5.24 Lemma. For a random variable X and δ > 0,

P
(
|X| > 2

δ

)
≤ 1

δ

∫ δ

−δ
[1− φX(t)]dt.

Proof. Note that∫ δ

−δ
[1− φX(t)]dt =

∫ δ

−δ
[1− EeitX ]dt = 2δ − E

∫ δ

−δ
eitXdt = 2δ − E

eiδX − e−iδX

iX

= 2δ − 2E
sin(δX)

X
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(this incidentally shows that the a priori complex number
∫ δ
−δ[1−φX(t)]dt is real). Thus

1

δ

∫ δ

−δ
[1− φX(t)]dt = 2E

[
1− sin(δX)

δX

]
.

Using | sinx| ≤ |x|, we have 1− sin x
x ≥ 0, so

1

δ

∫ δ

−δ
[1− φX(t)]dt ≥ 2E

[(
1− sin(δX)

δX

)
1{|δX|>2}

]
= 2E

[(
1− sin(δ|X|)

δ|X|

)
1{|δX|>2}

]
,

where is the last equality we used that sin x
x is even. Crudely, − sin(δ|X|) ≥ −1, hence

1

δ

∫ δ

−δ
[1− φX(t)]dt ≥ 2E

[(
1− 1

δ|X|

)
1{|δX|>2}

]
≥ 2E

[
1

2
1{|δX|>2}

]
= P (|δX| > 2) .

Proof of Theorem 5.14. Since |φXn(t)| ≤ 1 for every t, we have the same for the limit,

|φ(t)| ≤ 1 for every t.

Step 1 (tightness). Since φ is continuous at 0 and φ(0) = limn φXn(0) = 1, for every

ε > 0, there is δ > 0 such that |1− φ(t)| < ε for |t| < δ, so

1

δ

∫ δ

−δ
|1− φ(t)|dt ≤ 2ε.

By Lebesgue’s dominated convergence theorem,

1

δ

∫ δ

−δ
|1− φXn(t)|dt −−−−→

n→∞

1

δ

∫ δ

−δ
|1− φ(t)|dt,

so for large n,
1

δ

∫ δ

−δ
|1− φXn(t)|dt < 3ε.

By Lemma 5.24, we obtain

P
(
|Xn| >

2

δ

)
< ε.

This shows that the sequence (Xn) is tight. By Theorem 5.9, there is a subsequence

(Xnk) which converges in distribution to a random variable, say X. This is our candidate

for the limit of (Xn).

Step 2 (φ = φX). Since Xnk
d−→ X, we get φXnk → φX at every point, but also φXnk → φ

at every point, so φ = φX , which proves that φ is a characteristic function.

Step 3 (Xn
d−→ X). If this is not the case, then, by Theorem 5.5, there is a bounded

continuous function g such that Eg(Xn) 9 Eg(X). Therefore, there is ε > 0 and a
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sequence mk such that |Eg(Xmk)−Eg(X)| > ε. Since (Xn) is tight, using Theorem 5.9

again, there is a convergent subsequence Xmkl
to some random variable, say X ′. As

in Step 2, φX′ = φ = φX , so X ′ has the same distribution as X (Theorem 5.13) and

|Eg(Xmkl
)− Eg(X ′)| = |Eg(Xmkl

)− Eg(X)| > ε contradicts that Xmkl

d−→ X ′.

5.3 Proof of the central limit theorem

We shall need several elementary lemmas about complex numbers.

5.25 Lemma. If z1, . . . , zn and w1, . . . , wn are complex numbers all with modulus at

most θ, then ∣∣∣∣∣∣
n∏
j=1

zj −
n∏
j=1

wj

∣∣∣∣∣∣ ≤ θn−1
n∑
j=1

|zj − wj |.

Proof. We proceed by induction on n. For n = 1, we have equality. For n > 1, we have∣∣∣∣∣∣
n∏
j=1

zj −
n∏
j=1

wj

∣∣∣∣∣∣ =

∣∣∣∣∣∣z1

n∏
j=2

zj − w1

n∏
j=2

wj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣z1

n∏
j=2

zj − z1

n∏
j=2

wj

∣∣∣∣∣∣+

∣∣∣∣∣∣z1

n∏
j=2

wj − w1

n∏
j=2

wj

∣∣∣∣∣∣
= |z1|

∣∣∣∣∣∣
n∏
j=2

zj −
n∏
j=2

wj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∏
j=2

wj

∣∣∣∣∣∣ |z1 − w1|

≤ θ

∣∣∣∣∣∣
n∏
j=2

zj −
n∏
j=2

wj

∣∣∣∣∣∣+ θn−1|z1 − w1|

and the inductive assumption allows to finish the proof.

5.26 Lemma. For a complex number z with |z| ≤ 1, we have

|ez − (1 + z)| ≤ |z|2.

Proof. Using the power series expansion of ez, we get

|ez − (1 + z)| =
∣∣∣∣z2

2!
+
z3

3!
+ . . .

∣∣∣∣ ≤ |z|2( 1

2!
+
|z|
3!

+ . . .

)
≤ |z|2

(
1

2!
+

1

3!
+ . . .

)
= |z|2(e− 2).

5.27 Lemma. If (zn) is a sequence of complex numbers such that zn → z for some

z ∈ C, then (
1 +

zn
n

)n
→ ez.
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Proof. Fix c > |z|. Then eventually, |zn| < c and consequently,
∣∣1 + zn

n

∣∣ ≤ 1 + c
n ≤ e

c/n

and |ezn/n| = eRe(zn)/n ≤ ec/n, so applying Lemma 5.25 with θ = ec/n, for large n,

∣∣∣(1 +
zn
n

)n
− ezn

∣∣∣ =

∣∣∣∣∣∣
n∏
j=1

(
1 +

zn
n

)
−

n∏
j=1

ezn/n

∣∣∣∣∣∣ ≤
(
ec/n

)n−1

n
∣∣∣1 +

zn
n
− ezn/n

∣∣∣ .
Clearly eventually, |zn/n| ≤ 1 , so by Lemma 5.26,∣∣∣(1 +

zn
n

)n
− ezn

∣∣∣ ≤ (ec/n)n−1

n
∣∣∣zn
n

∣∣∣2 ≤ ec c2
n
.

It remains to use continuity, that is that ezn → ez.

We are ready to give a complete proof of the central limit theorem.

Proof of Theorem 5.1. Let X̄i = Xi−EXi
Var(X1) . Then EX̄i = 0, E|X̄i|2 = 1,

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)
=
X̄1 + . . .+ X̄n√

n

and by independence

φZn(t) = φX̄1

(
t√
n

)
. . . φX̄n

(
t√
n

)
=

[
φX̄1

(
t√
n

)]n
.

We investigate pointwise convergence of φZn . By Theorem 5.10 (iv), φX̄1
is twice con-

tinuously differentiable and we can compute that φ′
X̄1

(0) = iEX̄1 = 0 and φ′′
X̄1

(0) =

i2EX̄2
1 = −1. Thus by Taylor’s formula with Lagrange’s remainder

φX̄1
(t) = φX̄1

(0) + tφ′X̄1
(0) +

t2

2
φ′′X̄1

(ξt)

= 1 + tφ′X̄1
(0) +

t2

2
φ′′X̄1

(0) + t2R(t)

= 1− t2

2
+ t2R(t),

for some ξt between 0 and t and R(t) = 1
2 (φ′′

X̄1
(ξt)− φ′′X̄1

(0)). By the continuity of φ′′
X̄1

(at 0), R(t) −−−→
t→0

0. Note that R(t) may be complex. By Lemma 5.27, for every t ∈ R,

φZn(t) =

[
φX̄1

(
t√
n

)]n
=

[
1− t2

2n
+
t2

n
R(t)

]n
−−−−→
n→∞

e−t
2/2.

By Theorem 5.14, Zn converges in distribution to a random variable whose characteristic

function is e−t
2/2, that is a standard Gaussian random variable.

5.4 Poisson limit theorem

The following result, sometimes called the law of rare events, explains how the Poisson

distribution arises as a limit of the binomial distribution when the expected number of

successes converges to a constant as the number of Bernoulli trials goes to infinity.
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5.28 Theorem (Poisson limit theorem). Let a sequence of numbers pn ∈ [0, 1] be such

that npn −−−−→
n→∞

λ for some λ > 0. Let Sn be a binomial random variable with parameters

pn and n. Then Sn
d−→ X, where X is a Poisson random variable with parameter λ.

Proof. For nonnegative integer-valued random variables convergence in distribution is

equivalent to the pointwise convergence of the probability mass functions (homework!).

Thus Sn
d−→ X if and only if P (Sn = k) −−−−→

n→∞
P (X = k), for every integer k ≥ 0. Fix

then such k and note that as n→∞, we have

P (Sn = k) =

(
n

k

)
pkn(1− pn)n−k =

n(n− 1) . . . (n− k + 1)

k!
pkn(1− pn)n−k

=
1 +O(n−1)

k!
(npn)k(1− pn)n−k.

By the assumption, npn → λ. In particular, pn → 0. Consequently, (1− pn)−k → 1 and

(1− pn)n → e−λ, so

P (Sn = k) −−−−→
n→∞

1

k!
λke−λ = P (X = k) .
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6 Quantitative versions of the central limit theorem

6.1 Berry-Esseen theorem via Stein’s mehtod

Let X1, X2, . . . be i.i.d. random variables with finite variance. Let Zn = X1+...+Xn−nEX1√
nVar(X1)

and let Z be a standard Gaussian random variable. The central limit theorem asserts

that for every t ∈ R,

P (Zn ≤ t) −−−−→
n→∞

P (Z ≤ t) =
1√
2π

∫ t

−∞
e−x

2/2dx.

For practical purposes, we would like to know what is the error we make when we

use P (Z ≤ t) as an approximation to P (Zn ≤ t) for large n. This is possible under an

additional assumption (finite third moment) and is settled in the following theorem,

discovered independently by Berry and Esseen.

6.1 Theorem (Berry-Esseen theorem). Let X1, X2, . . . be i.i.d. random variables with

E|X1|3 <∞. Let

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)
,

ρ = E

∣∣∣∣∣X1 − EX1√
Var(X1)

∣∣∣∣∣
3

and let Z be a standard Gaussian random variable. There is a universal constant C

such that for every n ≥ 1 and every t ∈ R, we have∣∣P (Zn ≤ t)− P (Z ≤ t)
∣∣ ≤ Cρ√

n
.

6.2 Remark. We present a proof which will give C = 15.2, but this value is far from

optimal. Currently, the best value is C = 0.4774 (estblished via Fourier analytic methods

in [3]). Esseen proved a lower bound: C ≥ 10+
√

3
6
√

2π
= 0.4097 . . .

6.3 Remark. The rate 1/
√
n of the error is optimal. Consider i.i.d. symmetric random

signs ε1, ε2, . . . and let Zn = ε1+...+εn√
n

. For even n, by symmetry, we have

P (Zn ≤ 0) =
1 + P (ε1 + . . .+ εn = 0)

2
=

1

2
+

1

2

(
n

n/2

)
1

2n
,

thus, thanks to Stirling’s formula,

|P (Zn ≤ 0)− P (Z ≤ 0) | =
∣∣∣∣P (Zn ≤ 0)− 1

2

∣∣∣∣ =
1

2

(
n

n/2

)
1

2n
≈ 1

2

√
2√
πn

,

so in this case the error is of the order 1/
√
n.

For the proof the Berry-Esseen theorem, we shall need the following elementary tail

bound for the standard Gaussian distribution.
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6.4 Lemma. For x > 0, we have

(i)
∫∞
x
e−u

2/2du ≤
√

π
2 e
−x2/2,

(ii)
∫∞
x
e−u

2/2du ≤ 1
xe
−x2/2.

Proof. (i) let f(x) =
√

π
2 e
−x2/2−

∫∞
x
e−u

2/2du. Since f ′(x) =
(
1− x

√
π
2

)
e−x

2/2 is first

positive, then negative, f first increases, then decreases. Combined with f(0) = 0 and

f(x) −−−→
t→∞

0, this proves that f(x) ≥ 0.

(ii) We have
∫∞
x
xe−u

2/2du ≤
∫∞
x
ue−u

2/2du = e−u
2/2.

Proof of Theorem 6.1. For t, x ∈ R and λ > 0 define functions

ht(x) = 1(−∞,t](x),

and their continuous linear approximations

ht,λ(x) =


1, x ≤ t,

1− x−t
λ , t < x ≤ t+ λ,

0, x > t+ λ.

We will frequently use the following integral representation

ht,λ(x) =

∫ ∞
x

1

λ
1(t,t+λ)(s)ds.

Given γ ≥ 1, define the class of random variables

Lγ = {X, X is random variable such that EX = 0, EX2 = 1, E|X|3 = γ}

and for n = 1, 2, . . . define two quantities

B0(γ, n) = sup
X1,...,Xni.i.d.,Xi∈Lγ

sup
t∈R
|Eht(Zn)− Eht(Z)|,

B(λ, γ, n) = sup
X1,...,Xni.i.d.,Xi∈Lγ

sup
t∈R
|Eht,λ(Zn)− Eht,λ(Z)|.

Plainly, P (X ≤ t) = E1X≤t = Eht(X), so to prove the theorem, we would like to show

that √
n

γ
B0(γ, n) ≤ C, n ≥ 1, γ ≥ 1.

This is clear for n = 1 with C = 1 because |Eht(Zn)− Eht(Z)| ≤ 1, so from now on we

assume n ≥ 2 and divide the rest of the proof into several steps.

Step 1: regularisation (upper bound for B0 in terms of B). Since ht−λ ≤ ht ≤ ht,λ, we

get

Eht(Zn)− Eht(Z) ≤ Eht,λ(Zn)− Eht(Z)

= Eht,λ(Zn)− Eht,λ(Z) + Eht,λ(Z)− Eht(Z)

≤ Eht,λ(Zn)− Eht,λ(Z) + Eht+λ(Z)− Eht(Z).
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Observe that the first difference is upper bounded by B(t, λ, n) by its definition. The

second difference is

P (t < Z ≤ t+ λ) =

∫ t+λ

t

e−x
2/2 dx√

2π
≤
∫ t+λ

t

dx√
2π

=
λ√
2π
.

Altogether,

Eht(Zn)− Eht(Z) ≤ B(t, λ, n) +
λ√
2π
.

Similarly,

Eht(Zn)− Eht(Z) ≥ −B(t, λ, n)− λ√
2π
.

Thus

B0(γ, n) ≤ B(t, λ, n) +
λ√
2π
.

Step 2: Stein’s method (“encoding” Eh(Z) into a function). Fix t ∈ R, λ > 0 and set

h = ht,λ. Our goal is to upper bound B, so to upper bound Eh(Zn)−Eh(Z). The heart

of Stein’s method is to rewrite this in terms of Zn only. Let

f(x) = ex
2/2

∫ x

−∞
[h(u)− Eh(Z)]e−u

2/2du.

Then

f ′(x)− xf(x) = h(x)− Eh(Z),

so

Eh(Zn)− Eh(Z) = E
[
f ′(Zn)− Znf(Zn)

]
. (6.1)

Step 3: Estimates for f and f ′. For every x ∈ R, we have

|f(x) ≤
√
π

2
, |xf(x)| ≤ 1, |f ′(x)| ≤ 2 (6.2)

and for every x, y ∈ R, we have

|f ′(x+ y)− f ′(x)| ≤ |y|
(√

π

2
+ 2|x|+ 1

λ

∫ 1

0

1(t,t+λ)(x+ vy)dv

)
. (6.3)

Indeed, since h takes values in [0, 1], we have |h(u) − h(v)| ≤ 1 for any u and v, so for

x < 0,

|f(x)| ≤ ex
2/2

∫ x

−∞
|h(u)−Eh(Z)|e−u

2/2du ≤ ex
2/2

∫ x

−∞
e−u

2/2du = ex
2/2

∫ ∞
−x

e−u
2/2du,

which by Lemma 6.4 (i) is upper bounded by
√

π
2 . For x > 0, notice that

∫∞
−∞[h(u) −

Eh(Z)]e−u
2/2 du√

2π
= 0, so

f(x) = −ex
2/2

∫ ∞
x

[h(u)− Eh(Z)]e−u
2/2du
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and as above we get the bound |f(x)| ≤
√

π
2 . To bound xf(x) we proceed the same way

but use Lemma 6.4 (ii). Finally, since f ′(x) = xf(x) + h(x)− Eh(Z) (Step 2), we get

|f ′(x)| ≤ |xf(x)|+ |h(x)− Eh(Z)| ≤ 1 + 1 = 2.

This establishes (6.2). To prove (6.3), we use the formula for f ′ from Step 2 and write

|f ′(x+ y)− f ′(x)| = |(x+ y)f(x+ y) + h(x+ y)− xf(x)− h(x)|

= |yf(x+ y) + x(f(x+ y)− f(x)) + h(x+ y)− h(x)|

≤ |y|
√
π

2
+ 2|x||y|+ |h(x+ y)− h(x)|,

where in the last inequality we used the mean value theorem writing f(x+ y)− f(x) =

f ′(ξ)y and then estimating |f ′(ξ)| ≤ 2. Finally, by the integral representation for h,

|h(x+ y)− h(x)| =
∣∣∣∣ 1λ
∫ x+y

x

1(t,t+λ)(u)du

∣∣∣∣ =

∣∣∣∣ yλ
∫ 1

0

1(t,t+λ)(x+ vy)dv

∣∣∣∣
which after plugging back in the previous inequality finishes the proof of (6.3).

Step 4: Estimates for B(λ, γ, n) via (6.1). To estimate B(λ, γ, n), we need to upper

bound Eh(Zn) − Eh(Z) = E[f ′(Zn) − Znf(Zn)] (recall (6.1) from Step 2). Here we

exploit that Zn = X1+...+Xn√
n

is a sum of i.i.d. random variables. Since the Xi have the

same distribution, by linearity,

EZnf(Zn) = E
∑
Xi√
n
f(Zn) =

√
nEXnf(Zn).

Note also that Zn =
√

n−1
n Zn + Xn√

n
and thus

E[f ′(Zn)− Znf(Zn)] = E[f ′(Zn)−
√
nXnf(Zn)]

= E
[
f ′(Zn)−

√
nXn

∫ 1

0

d

du
f

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

−
√
nXnf

(√
n− 1

n
Zn−1

)]
By independence and EXn = 0 the last term vanishes and after computing the derivative

we get

E[f ′(Zn)− Znf(Zn)] = E

[
f ′(Zn)−X2

n

∫ 1

0

f ′

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

]

= E

[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]

+ E

[
−X2

n

∫ 1

0

{
f ′

(√
n− 1

n
Zn−1 + u

Xn√
n

)

− f ′
(√

n− 1

n
Zn−1

)}
du

]
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where in the last equality we used independence and EX2
n = 1. We bound the two terms

separately.

Step 4.1: First term. Using Zn =
√

n−1
n Zn + Xn√

n
and (6.3),∣∣∣∣∣E

[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ E

∣∣∣∣Xn√
n

∣∣∣∣
(√

π

2
+ 2

√
n− 1

n
|Zn−1|+

1

λ

∫ 1

0

1(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

)

Since E|Xn| ≤
√
E|Xn|2 = 1 and similarly E|Zn−1| ≤ 1, as well as trivially

√
n−1
n ≤ 1,

we get∣∣∣∣∣E
[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ 1√

n

√
π

2
+ 2

1√
n

+
1

λ
√
n
EXn

[
|Xn|

∫ 1

0

EZn−1
1(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

]
,

where in the last term we used the independence of Xn and Zn−1. Note that

EZn−11(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)

= PZn−1

((
t− uXn√

n

)√
n

n− 1
< Zn−1 <

(
t− uXn√

n

)√
n

n− 1
+ λ

√
n

n− 1

)
,

Denoting a =
(
t− uXn√

n

)√
n
n−1 and estimating n

n−1 ≤ 2, we get that this probability is

upper bounded by

P
(
a < Zn−1 < a+ λ

√
2
)

which we rewrite in order to upper bound it in terms of B0,

P
(
a < Zn−1 < a+ λ

√
2
)

= P
(
Zn−1 < a+ λ

√
2
)
− P

(
Z < a+ λ

√
2
)

+ P (Z ≤ a)− P (Zn−1 ≤ a) + P
(
a ≤ Z ≤ a+ λ

√
2
)

≤ 2B0(γ, n− 1) +
λ
√

2√
2π
,

where the last term was crudely bounded using the maximum of standard Gaussian

density. Plugging this back yields∣∣∣∣∣E
[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ 1√

n

√
π

2
+ 2

1√
n

+
1

λ
√
n
E

[
|Xn|

(
2B0(γ, n− 1) +

λ√
π

)]

≤ 1√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
≤ γ√

n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.
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Step 4.2: Second term. Using again (6.3) and independence,∣∣∣∣∣E
[
−X2

n

∫ 1

0

{
f ′

(√
n− 1

n
Zn−1 + u

Xn√
n

)
− f ′

(√
n− 1

n
Zn−1

)}
du

]∣∣∣∣∣
≤ EX2

n

|Xn|√
n

∫ 1

0

u

(√
π

2
+ 2

√
n− 1

n
|Zn−1|

+
1

λ

∫ 1

0

1(t,t+λ)

(√
n− 1

n
Zn−1 + uv

Xn√
n

)
dv

)
du

≤ E
|Xn|3√

n

∫ 1

0

u

(√
π

2
+ 2EZn−1

|Zn−1|

+
1

λ

∫ 1

0

EZn−11(t,t+λ)

(√
n− 1

n
Zn−1 + uv

Xn√
n

)
dv

)
du

≤ E
|Xn|3√

n

∫ 1

0

u

(√
π

2
+ 2 +

1

λ

(
2B0(γ, n− 1) +

λ√
π

))
du

=
γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

Putting Steps 4.1 and 4.2 together yields

|E[f ′(Zn)− Znf(Zn)]| ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

By Step 2, this gives

B(t, λ, n) ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

Step 5: Optimisation of parameters and end of proof. The previous inequality and Step 1

yield

B0(γ, n) ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
+

λ√
2π

=
3γ

2
√
n

(√
π

2
+ 2 +

1√
π

)
+

1

λ

3γB0(γ, n− 1)√
n

+
λ√
2π
.

Set λ = α γ√
n

, α > 0 and multiply both sides by
√
n
γ to get

B0(γ, n)

√
n

γ
≤ 3

2

(√
π

2
+ 2 +

1√
π

)
+

3

α
B0(γ, n− 1)

√
n

γ
+

α√
2π
.

Let

B = sup
γ≥1,n≥2

B0(γ, n)

√
n

γ
.

For n ≥ 2, we have

B0(γ, n− 1)

√
n

γ
= B0(γ, n− 1)

√
n− 1

γ

√
n

n− 1
≤ max

{
√

2, B

√
3

2

}
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(recall that trivially B0(γ, 1) 1
γ ≤ 1). If B > 2√

3
, we thus obtain

B ≤ 3

2

(√
π

2
+ 2 +

1√
π

)
+

3

α
B

√
3

2
+

α√
2π
.

For α > 3
√

3
2 this gives

B ≤ α

α− 3
√

3
2

3

2

(√
π

2
+ 2 +

1√
π

)
+

α2

α− 3
√

3
2

1√
2π
.

The choice of α which equates the two terms on the right hand side gives

B < 15.4.

Optimising over α (which requires more computations) gives a slightly better estimate

B < 15.2.

6.5 Remark. The proof presented here is from [1]. The heart of the argument is based

on Stein’s method (Step 2), introduced by Charles Stein, who developed this influential

technique for teaching purposes of the central limit theorem for his course in statistics.

6.6 Example. Let us apply the Berry-Esseen theorem to i.i.d. Bernoulli random vari-

ables X1, . . . , Xn with parameter 0 < p < 1. We have EXi = p, Var(Xi) = p(1− p) and

we obtain for every real t and every integer n ≥ 1∣∣∣∣∣P
(
X1 + . . .+Xn − np√

np(1− p)
≤ t

)
− P (Z ≤ t)

∣∣∣∣∣ ≤ C ρ√
n
,

where

ρ = E

∣∣∣∣∣ X1 − p√
p(1− p)

∣∣∣∣∣
3

=
p(1− p)3 + (1− p)p3√

p(1− p)
3 =

1− 2p(1− p)√
p(1− p)

.

In particular, when np is of the constant order for large n, the Berry-Esseen theorem is

not useful at all because the bound of the error, C ρ√
n

is of the order C√
np(1−p)

which is

constant. This might suggest that the Gaussian approximation is not valid in this case,

which is in fact true in view of the Poisson limit theorem (Theorem 5.28).

6.2 Local central limit theorem

In applications we often need to address the following: suppose X1, X2, . . . are i.i.d.

discrete, say integer-valued random variables and we would like to know for large n

what is the approximate value of P (X1 + . . .+Xn = xn) for some xn ∈ Z. If EX2
i <∞,
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µ = EX1, σ2 = Var(X1) and xn−nµ√
n
≈ y is of constant order for large n, by the central

limit theorem,

P (X1 + . . .+Xn = xn)

= P
(
xn −

1

2
< X1 + . . .+Xn < xn +

1

2

)
= P

(
xn − nµ√

n
− 1

2
√
n
<
X1 + . . .+Xn − nµ√

n
<
xn − nµ√

n
+

1

2
√
n

)
≈ 1√

2πσ

∫ y+ 1
2
√
n

y− 1
2
√
n

e−
t2

2σ2 dt

≈ 1√
n

1√
2πσ

e−
y2

2σ2 ,

obtaining the approximation for P (X1 + . . .+Xn = xn) by the Gaussian density. To

control the error in this approximation, we cannot simply use the Berry-Esseen theorem

here because its error bound O( 1√
n

) is of the same order as the value of our approxima-

tion 1√
n

1√
2πσ

e−y
2/2. The local central limit theorem addresses this deficiency. We only

discuss the discrete case. There are also versions which give approximations to densities

of sums of i.i.d. continuous random variables.

We shall use the common notation a+ bZ for the set {a+ bx, x ∈ Z}.

6.7 Theorem (Local central limit theorem). Let X1, X2, . . . be i.i.d. integer-valued

random variables such that EX2
1 < ∞. Suppose Xi is not supported on any proper

subprogression of Z, that is there are no r > 1, a ∈ R such that P (Xi ∈ a+ rZ) = 1.

Denote µ = EX1, σ =
√

Var(X1) and

pn(x) = P
(
X1 + . . .+Xn − nµ√

n
= x

)
, x ∈ Z− nµ√

n
.

Then

sup
x∈ Z−nµ√

n

∣∣∣∣√npn(x)− 1√
2πσ

e−
x2

2σ2

∣∣∣∣ −−−−→n→∞
0.

6.8 Lemma. For an integer-valued random variable X and an integer k, we have

P (X = k) =
1

2π

∫ π

−π
e−itkφX(t)dt.

Proof. Note that for two integers k and l, we have

1{l=k} =
1

2π

∫ π

−π
eit(l−k)dt.

Thus

P (X = k) = E1{X=k} = E
1

2π

∫ π

−π
eit(X−k)dt =

1

2π

∫ π

−π
e−itkEeitXdt

=
1

2π

∫ π

−π
e−itkφX(t)dt.
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Proof of Theorem 6.7. Applying Lemma 6.8 to X1 + . . .+Xn and changing the variables

yields

pn(x) = P
(
X1 + . . .+Xn = x

√
n+ nµ

)
=

1

2π

∫ π

−π
e−it(x

√
n+nµ)φX1+...+Xn(t)dt

=
1√
n

1

2π

∫ π
√
n

−π
√
n

e−itx
[
e
−i t√

n
µ
φX1

(
t√
n

)]n
dt.

Using that the characteristic function of a centred Gaussian random variable with vari-

ance 1/σ2 is e−
x2

2σ2 , we have

e−
x2

2σ2 =
σ√
2π

∫ ∞
−∞

eitxe−t
2σ2/2dt,

which gives (by symmetry, we can write e−itx instead of eitx)

1√
2πσ

e−
x2

2σ2 =
1

2π

∫ ∞
−∞

e−itxe−t
2σ2/2dt.

Therefore,∣∣∣∣√npn(x)− 1√
2πσ

e−
x2

2σ2

∣∣∣∣ ≤ 1

2π

∫
|t|≤π

√
n

∣∣∣∣φX1−µ

(
t√
n

)n
− e−t

2σ2/2

∣∣∣∣ dt
+

1

2π

∫
|t|≥π

√
n

e−t
2σ2/2dt.

Since the right hand side does not depend on x, we need to show that it converges to 0

as n→∞. The second integral clearly does. To deal with the first integral, we change

the variables∫
|t|≤π

√
n

∣∣∣∣φX1−µ

(
t√
n

)n
− e−t

2σ2/2

∣∣∣∣dt =
1

σ

∫
|t|≤πσ

√
n

∣∣∣∣φX1−µ
σ

(
t√
n

)n
− e−t

2/2

∣∣∣∣dt,
let X̄1 = X1−µ

σ (which has mean 0 and variance 1) and break it into two pieces∫
|t|≤ε

√
n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t

2/2

∣∣∣∣dt+

∫
ε
√
n≤|t|≤πσ

√
n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t

2/2

∣∣∣∣dt. (6.4)

Recall from the proof of the central limit theorem that

φX̄1

(
t√
n

)n
−→ e−t

2/2

and by Taylor’s formula,

φX̄1
(t) = 1− t2

2
+ t2R(t),

for some (complex-valued) function R such that R(t)→ 0 as t→ 0. Choose ε < 1 such

that |R(t)| < 1
4 for all |t| < ε. Then for |t| ≤ ε

√
n,∣∣∣∣φX̄1

(
t√
n

)∣∣∣∣ ≤ ∣∣∣∣1− t2

2n

∣∣∣∣+
t2

4n
= 1− t2

4n
≤ e− t2

4n ,
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so ∣∣∣∣φX̄1

(
t√
n

)n
− e−t

2/2

∣∣∣∣ ≤ e−t2/4 + e−t
2/2.

By Lebesgue’s dominated convergence theorem, the first piece in (6.4) converges to 0

as n → ∞. Finally, to handle the second piece, we claim that: |φX̄1
(t)| < cε for all

ε ≤ |t| ≤ πσ for some constant cε < 1. This suffices because then∫
ε
√
n≤|t|≤πσ

√
n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t

2/2

∣∣∣∣dt ≤ ∫
ε
√
n≤|t|≤πσ

√
n

(cnε + e−t
2/2)dt

and the right hand side clearly goes to 0 as n→∞. Now we use thatX1 is integer-valued,

not concentrated on any proper subprogreesion to show the claim. Since X1 is integer-

valued, φX1
is 2π-periodic and in particular φX1

(2π) = 1. Moreover, |φX1
(t)| < 1 for all

0 < t < 2π. Otherwise, if |φX1(t0)| = 1 for some 0 < t0 < 2π, then eit0X1 is constant,

say equal to eia. Consequently, X1 ∈ a
t0

+ 2π
t0
Z, which contradicts the assumption. By

periodicity and continuity, there is cε < 1 such that |φX1
(t)| < cε for all ε < |t| ≤ π.

Since φX̄1
(t) = e−i

µ
σ φX1

( tσ ), the claim follows.

Of course, in the proof it was not important that the Xi are integer-valued because by

rescaling we could assume that they take values in a+rZ for some a, r ∈ R. Such random

variables are said to have a lattice distribution. We finish this section by summarising

periodicity properties of their characteristic functions, which played a crucial role in the

proof of the local central limit theorem.

6.9 Lemma. For a random variable X with characteristic function φX the following

are equivalent

(i) φX(s) = 1 for some s 6= 0,

(ii) P
(
X ∈ 2π

s Z
)

= 1,

(iii) φX is |s| periodic.

Proof. (i) ⇒ (ii). Since 1 = φX(s) = E cos(sX) + iE sin(sX), we have 0 = E(1 −
cos(sX)). Since 1 − cos(sX) is a nonnegative random variable whose expectation is 0,

we have P (cos(sX) = 1) = 1 (see Theorem 1.2 (c)), equivalently P (sX ∈ 2πZ) = 1.

(ii)⇒ (iii). We have

φX(t+ 2π|s|) = Eei(t+|s|)X =
∑
k∈Z

ei(t+|s|)
2π
|s|kP

(
X =

2π

|s|
k

)
=
∑
k∈Z

eit
2π
|s|kP

(
X =

2π

|s|
k

)
= φX(t).

(iii)⇒ (i). Plainly, φX(s) = φX(0) = 1.

6.10 Lemma. Let X be a random variable with characteristic function φX . There are

only 3 possibilities
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(i) |φX(t)| < 1 for every t 6= 0,

(ii) |φX(s)| = 1 for some s > 0 and |φX(t)| < 1 for all 0 < t < s and then φX is

s-periodic and X ∈ a+ 2π
s Z a.s. for some a ∈ R,

(iii) |φX(t)| = 1 for every t ∈ R and then we have that φX(t) = eita for some a ∈ R,

that is X = a a.s.

If (ii) holds, X has a lattice distribution and since |φX(t)| < 1 for all 0 < t < s, by

Lemma 6.9, s is the largest r > 0 such that P (X ∈ a+ rZ) = 1. We sometimes call s

the span of the distribution of X.

Proof. Let us first explain the implication in (ii). Suppose |φX(s)| = 1 for some s > 0.

Then φX(s) = eia for some a ∈ R. Since 1 = e−iaφX(s) = φX−a(s), by Lemma 6.9

applied to X−a, we get that X−a ∈ 2π
s Z a.s. and φX−a is s-periodic, so φX = eiaφX−a

is s-periodic.

To prove the trichotomy, suppose (i) and (ii) do not hold. Then there is a positive

sequence tn → 0 such that |φX(tn)| = 1. Consequently, by what we just proved, there are

an ∈ R such that X ∈ an + 2π
tn
Z a.s. and φX is tn-periodic. Without loss of generality,

we can pick an ∈ (− π
tn
, πtn ]. Since tn → 0, we have P

(
X ∈ (− π

tn
, πtn )

)
→ 1, which

combined with X ∈ an + 2π
tn
Z and an ∈ (− π

tn
, πtn ] gives P (X = an)→ 1. Consequently,

there is n0 such that for all n ≥ n0, P (X = an) > 3/4, but then all an, n ≥ n0 have to be

equal, say an = a and P (X = an) → 1 finally gives P (X = a) = 1. Then φX(t) = eita,

consequently (iii) holds.
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7 Simple random walk

Let 0 < p < 1 and let X1, X2, . . . be i.i.d. random variables with P (Xi = 1) = p

and P (Xi = −1) = 1 − p. Let S0 be a random variable independent of the Xi. For

n = 1, 2, . . . define

Sn = S0 +X1 + . . .+Xn.

The sequence (Sn)n≥0 is an example of a stochastic process (a collection of random

variables), called a simple random walk (in dimension 1, i.e. on Z) starting at S0.

We have

Sn+1 =

Sn + 1, with probability p,

Sn − 1, with probability 1− p.

(“the future depends only on the present, not past”, which is called the Markov prop-

erty and hence the simple random walk is an example of a Markov process). For

example,

P (Sn = S0) = P (X1 + . . .+Xn = 0) =

0, if n is odd,(
n
n/2

)
pn/2(1− p)n/2, if n is even.

The main question we would like to address is: what is the chance that the walk revisits

its starting point, that is what is

β = P (∃n ≥ 1 Sn = S0)?

By the strong law of large numbers, Sn
n

a.s.−−−−→
n→∞

EX1 = 2p − 1. Consequently, for

p 6= 1
2 , Sn converges almost surely to +∞ or −∞ (depending whether p > 1

2 ). This

suggests that if p 6= 1
2 , then β < 1. What is β in the symmetric case p = 1

2?

We shall say that a walk is recurrent if β = 1 and transient if β < 1.

7.1 Dimension 1

In dimension 1, we can obtain an explicit and very simple expression for β.

7.1 Theorem. For a simple random walk (Sn)n≥0 starting at 0 (that is S0 = 0), we

have

β = P (Sn = 0 for some n ≥ 1) = 1− |2p− 1|.

7.2 Corollary. A simple random walk in dimension 1 is recurrent if and only if p = 1
2 .

Moreover, then P (Sn revisits 0 infinitely many times | S0 = 0) = 1.

Proof. The main idea is that by the Markov property,

P (Sn+m = 0 for some m ≥ 1 | Sn = 0) = P (Sn = 0 for some m ≥ 1 | S0 = 0) = 1

(the last equality following from Theorem 7.1). We leave the details as an exercise.
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Proof of Theorem 7.1. For n ≥ 0 define

An = {Sn = 0}

(a revisit to the origin at time n) and for n ≥ 1 define

Bn = {Sn = 0, Sk 6= 0, 1 ≤ k ≤ n− 1}

(a first revisit to the origin at time n). Note that A0 = Ω and B1 = ∅. Since An ⊂⋃n
k=1Bk and the Bk are disjoint, we have for n ≥ 1,

P (An) = P

(
An ∩

n⋃
k=1

Bk

)
=

n∑
k=1

P (An ∩Bk) .

The key observation is that by the Markov property, P (An ∩Bk) = P (Bk)P (An−k), so

P (An) =

n∑
k=1

P (Bk)P (An−k) .

Introducing the sequences,

uk = P (Ak) and fk = P (Bk) ,

it becomes

un =

n∑
k=1

fkun−k, n ≥ 1.

Our goal is to find

β = P

⋃
n≥1

{Sn = 0}

 = P

⋃
n≥1

Bn

 =
∑
n≥1

P (Bn) =
∑
n≥1

fn.

We use generating functions. Set

U(s) =

∞∑
n=0

uns
n and F (s) =

∞∑
n=0

fns
n

(with f0 = 0) which are well defined for |s| < 1. By the recurrence relation derived

above, we obtain

U(s)− 1 =

∞∑
n=1

uns
n =

∞∑
n=1

(
n∑
k=1

fkun−k

)
sn =

∞∑
k=1

fks
k
∞∑
n=k

un−ks
n−k = F (s)U(s),

thus

F (s) = 1− 1

U(s)
, |s| < 1.

By virtue of Abel’s theorem, we get

β =

∞∑
n=1

fn = lim
s→1−

F (s) = 1− 1

lims→1− U(s)
. (7.1)
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(the series
∑∞
n=1 fns

n for s > 0 converges or equals +∞ as having nonnegative terms;

similarly for
∑∞
n=1 uns

n). Using the explicit expression for un, we find that

U(s) =

∞∑
n=0

uns
n =

∞∑
m=0

(
2m

m

)
pm(1− p)m(s2)m =

[
1− 4p(1− p)s2

]−1/2
,

where the last sum is evaluated using the (infinite) binomial theorem (the Taylor ex-

pansion of (1 + x)α). Plainly, U(s) −−−−→
s→1−

(1− 4p(1− p))−1/2, so finally

β = 1−
√

1− 4p(1− p) = 1− |2p− 1|.

It is now easy to compute the expected time to return to the starting point. It turns

out that it is infinity in the symmetric case (in words, a symmetric random walk revisits

its starting point almost surely infinitely many times but the waiting time for a return

is infinitely long in expectation).

7.3 Theorem. For a symmetric simple random walk (Sn)n≥0 starting at the origin

(S0 = 0), define T = min{n ≥ 1, Sn = 0} (the waiting time to return to the starting

point). Then ET =∞.

Proof. Using the notation from the previous proof that fn is the probability of the first

revisit happening at time n, by Abel’s theorem,

ET =

∞∑
n=1

nfn = lim
s→1−

∞∑
n=1

nfns
n−1 = lim

s→1−
F ′(s).

It was established that F (s) = 1 − 1
U(s) = 1 −

√
1− s2 when p = 1

2 , so F ′(s) = s√
1−s2

and lims→1− F
′(s) =∞.

7.2 Dimension 2 and higher

Let ei = (0, . . . , 0, 1, 0, . . . , 0) (1 at ith coordinate), i = 1, . . . , d, be the standard

basis vectors in Rd. We define a symmetric simple random walk (Sn)n≥0 in dimen-

sion d starting at 0 = (0, 0, . . . , 0) by S0 = (0, . . . , 0) and Sn = X1 + . . . + Xn,

where X1, X2, . . . are i.i.d. random vectors, each uniformly distributed on the set

{e1,−e1, e2,−e2, . . . , ed,−ed}, that is

Sn+1 =
{
Sn ± ei, with probability

1

2d
.

In words, at each step, the walk chooses uniformly at random and independently of the

past one of the 2d directions and moves to the neighbouring integer lattice site along

this direction.

We are interested whether the walk is recurrent or transient.
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7.4 Remark. From (7.1), it follows that a walk is recurrent (β = 1) if and only if∑∞
n=1 un = ∞. Note that to derive (7.1), we only used the Markov property of the

walk. In particular, this conclusion remains valid for walks in all dimensions.

7.5 Theorem. A symmetric simple random walk (Sn)n≥0 in dimension d starting at 0

is recurrent if d = 1, 2 and transient if d ≥ 3.

Proof. The case d = 1 was done in Theorem 7.1. Consider now d ≥ 2. We shall use

Remark 7.4.

Let d = 2. For odd n, clearly un = 0 and for even n, say n = 2m, we have

un = P (Sn = 0) =

m∑
k=0

(
2m

k

)(
2m− k
k

)(
2m− 2k

m− k

)(
m− k
m− k

)(
1

4

)2m

(the walk takes k steps which are +e1, k steps which are −e1, m − k steps which are

+e2 and m− k steps which are −e2). Since(
2m

k

)(
2m− k
k

)(
2m− 2k

m− k

)(
m− k
m− k

)
=

(2m)!

(k!)2((m− k)!)2
=

(
2m

m

)(
m

k

)2

,

this simplifies to

u2m =

(
2m

m

)(
1

4

)2m m∑
k=0

(
m

k

)2

=

(
2m

m

)2(
1

4

)2m

.

By Stirling’s formula, u2m ≈ 1
πm , so

∑∞
n=1 un = +∞. Consequently, the walk is recur-

rent.

Let d ≥ 3. We proceed identically as in the case d = 2. For n = 2m, we have

u2m =
∑

k1+...+kd=m

(
2m

k1

)(
2m− k1

k1

)
. . .

(
2m− 2k1 − . . .− 2kd−1

kd

)(
1

2d

)2m

=
∑

k1+...+kd=m

(2m)!

(k1!)2 . . . (kd!)2

(
1

2d

)2m

=

(
2m

m

)(
1

2d

)2m ∑
k1+...+kd=m

(m!)2

(k1!)2 . . . (kd!)2
.

The last sum can be estimated as follows: the coefficient m!
k1!...kd! is maximised over

nonnegative integers k1 + . . .+ kd = m when they are all equal, which gives

m!

k1! . . . kd!
≤ m!((

m
d

)
!
)d

(if m/d is not integral, we mean (m/d)! = Γ(m/d−1); this inequality easily follows from

the log-convexity of the Gamma function which in turn can be shown using Hölder’s

inequality). The multinomial theorem gives∑
k1+...+kd=m

m!

k1! . . . kd!
= (1 + . . .+ 1︸ ︷︷ ︸

d times

)m = dm.
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Putting these two observations together yields

u2m ≤
(

2m

m

)(
1

2d

)2m
m!((
m
d

)
!
)d dm =

(
2m

m

)
1

22m

m!((
m
d

)
!
)d .

By Stirling’s formula, for large m (d is fixed!) the right hand side is asymptotic to cd
md/2

.

Consequently,
∑
un <∞ and the walk is transient.
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8 Some concentration inequalities

Sums of independent random variables, say X1, . . . , Xn tend to “concentrate” around

the mean, i.e. P (|X1 + . . .+Xn − E(X1 + . . .+Xn)| > t) is usually (exponentially)

small for t > 0. This is a consequence of independence, but of course exact quantitative

statements depend on additional assumptions on the Xi and t. We shall discuss two

such inequalities for bounded random variables.

There is an elegant generalisation of Bernstein’s inequality (Theorem 2.7) to any

bounded random variables, which as Bernstein’s inequality also provides a Gaussian

tail.

8.1 Theorem (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables

such that for each i, Xi ∈ [ai, bi] with some reals ai < bi. For S = X1 + . . . + Xn and

t > 0, we have

P (S − ES > t) ≤ exp

{
− 2t2∑n

i=1(bi − ai)2

}
. (8.1)

8.2 Lemma. Let X be a random variable such that EX = 0 and X ∈ [a, b] for some

reals a < b. Then for every t,

EetX ≤ exp

{
(b− a)2

8
t2
}
.

Proof. For x ∈ [a, b], writing tx as a convex combination of ta and tb, that is tx =

b−x
b−a ta+ x−a

b−a tb, we get

etx ≤ b− x
b− a

eta +
x− a
b− a

etb.

Taking the expectation and using EX = 0 gives

EetX ≤ peta + (1− p)etb,

where we denote p = b
b−a , 1 − p = −a

b−a which are both between 0 and 1. It suffices to

show that

peta + (1− p)etb ≤ exp

{
(b− a)2

8
t2
}
.

Let

h(t) = log(peta + (1− p)etb).

We have, h(0) = 0,

h′(t) =
paeta + (1− p)betb

peta + (1− p)etb
,

so h′(0) = 0 and

h′′(t) =
(pa2eta + (1− p)b2etb)(peta + (1− p)etb)− (paeta + (1− p)betb)2

(peta + (1− p)etb)2

=
p(1− p)(b− a)2et(a+b)

(peta + (1− p)etb)2
=

(b− a)2

4

(
2
√
peta(1− p)etb

peta + (1− p)etb

)2

,
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so h′′(t) ≤ (b−a)2

4 . By Taylor’s formula with the Lagrange remainder,

h(t) = h(0) + h′(0)t+
1

2
h′′(ξ)t2 =

1

2
h′′(ξ)t2 ≤ (b− a)2

8
t2.

Proof of Theorem 8.1. Considering X̃i = Xi − EXi, we can assume that EXi = 0.

Then ES = 0. The main idea is to take advantage of independence by considering the

exponential moments. For λ > 0, by Chebyshev’s inequality, we have

P (S > t) = P
(
eλS > eλt

)
≤ e−λtEeλS = e−λt

∏
EeλXi .

Lemma 8.2 yields

P (S > t) ≤ e−λt
∏

Eeλ
2 (bi−ai)

2

8 = exp

{
−λt+ λ2

∑
(bi − ai)2

8

}
.

Choosing λ which minimises the right hand side, that is λ = 4t∑
(bi−ai)2 finishes the

proof.

8.3 Example. Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter p.

Then Xi ∈ [0, 1], S = X1 + . . .+Xn is binomial and with t = δnp, we get

P (S > (1 + δ)np) ≤ exp{−2δ2p2n}.

This gives a Gaussian decay of the tail for large δ, provided that p is of constant order.

If, say p = 1/n, we get

P (S > 1 + δ) ≤ exp

{
−2δ2 1

n

}
,

which is not good because as n→∞, S converges in distribution to a Poisson random

variable with parameter 1, so its tail should decay like the one of the Poisson distribution.

8.4 Theorem (Chernoff’s inequality). Let X1, . . . , Xn be independent random variables

with Xi ∈ [0, 1] for each i. For S = X1 + . . .+Xn, µ = ES and t > 0, we have

P (S ≥ µ+ t) ≤ et
(

µ

µ+ t

)µ+t

.

Proof. For λ > 0, by Chebyshev’s inequality, we have

P (S > µ+ t) = P
(
eλS > eλ(µ+t)

)
≤ e−λ(µ+t)EeλS = e−λ(µ+t)

∏
EeλXi .

By convexity, for every x ∈ [0, 1], eλx−1
λx ≤ eλ−1

λ , so eλx ≤ 1 + x(eλ − 1), which after

taking the expectation gives

EeλXi ≤ 1 + (eλ − 1)EXi.
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Using the AM-GM inequality yields∏
EeλXi ≤

(∑
[1 + (eλ − 1)EXi]

n

)n
=

(
1 +

eλ − 1

n
µ

)n
.

Consequently,

P (S > µ+ t) ≤ e−λ(µ+t)

(
1 +

eλ − 1

n
µ

)n
.

To obtain the assertion, we choose λ such that e−λ = µ
µ+t and get

P (S > µ+ t) ≤
(

µ

µ+ t

)µ+t(
1 +

t

n

)n
≤
(

µ

µ+ t

)µ+t

et.

(the optimal choice for λ gives a more complicated expression).

8.5 Remark. The same arguments give bounds for lower tails, that is for 0 < t < µ,

we have

P (S ≤ µ− t) ≤ e−t
(

µ

µ− t

)µ−t
(use P (S ≤ µ− t) ≤ e−λ(µ−t)EeλS for λ < 0).

8.6 Remark. By the inequality x− (1 + x) log(1 + x) ≤ x2

2(1+ x
3 ) , x > 0, we also get

P (S > µ+ t) ≤ exp

{
− t2

2(µ+ t
3 )

}
.

8.7 Remark. The Chernoff bound is usually written with t = δµ as

P (S > (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
= exp {µ[δ − (1 + δ) log(1 + δ)]} .

For small δ, we get a Gaussian tail because δ − (1 + δ) log(1 + δ) ≤ − δ
2

3 for 0 ≤ δ ≤ 3
2 ,

so

P (S > (1 + δ)µ) ≤ exp

{
−δ

2µ

3

}
, 0 ≤ δ ≤ 3

2
.

For large δ, we get a Poisson tail because δ − (1 + δ) log(1 + δ) ≤ − 1
3 (1 + δ) log(1 + δ)

for δ ≥ 3
2 , so

P (S > (1 + δ)µ) ≤ exp
{
−µ

3
(1 + δ) log(1 + δ)

}
, δ ≥ 3

2
.

8.8 Example. When S is binomial with parameters n and p = 1
p as in Example 8.3,

we have µ = 1 and Theorem 8.4 gives

P (S ≥ 1 + t) ≤ et
(

1

1 + t

)1+t

= e−1

(
e

1 + t

)1+t

.

For large n, by the Poisson limit theorem, S tends to a Poisson random variable X with

parameter 1 and

P (X ≥ 1 + t) ≥ P (X = 1 + t) = e−1 1

(1 + t)!
≈ e−1

(
e

1 + t

)1+t
1√

2π(1 + t)
.

Thus Chernoff’s inequality removes the inefficiency of Hoeffding’s inequality from Ex-

ample 8.3.
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If we can control the variance, sometimes the following concentration inequality gives

some improvements on the previous two.

8.9 Theorem (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables

such that for each i, EXi = 0 and Xi ∈ [−1, 1]. Let S = X1 + . . .+Xn and σ2 = Var(S).

Then, for t > 0,

P (S > t) ≤ exp

{
− t2

2(σ2 + t
3 )

}
.

Proof. We begin in the same way as in the proof of Hoeffding’s and Chernoff’s inequal-

ities: for λ > 0, we have

P (S > t) ≤ e−λt
∏

EeλXi .

By Taylor’s expansion and the assumption EXi = 0,

EeλXi = E
(

1 + λXi +
1

2
(λXi)

2 + . . .

)
≤ 1 +

∑
k≥2

λk

k!
E|Xi|k.

Since |Xi| ≤ 1, for k ≥ 2, we have E|Xi|k = E|Xi|k−2|Xi|2 ≤ E|Xi|2 and thus

EeλXi ≤ 1 +

∑
k≥2

λk

k!

EX2
i = 1 +

(
eλ − λ− 1

)
EX2

i ≤ exp
{(
eλ − λ− 1

)
EX2

i

}
.

Consequently,

P (S > t) ≤ e−λt exp
{(
eλ − λ− 1

)
σ2
}

= exp
{
−λ(t+ σ2) + eλσ2 − σ2

}
.

Choosing λ such that eλ = 1 + t
σ2 yields

P (S > t) ≤ exp

{
−(t+ σ2) log

(
1 +

t

σ2

)
+ t

}
= et

(
σ2

σ2 + t

)t+σ2

.

We finish as in Remark 8.6.

65



A Appendix: Stirling’s formula

Our goal here is to give a complete and self-contained proof of indispensable Stirling’s

approximation for factorials (with error bounds), stated in the following theorem.

A.1 Theorem (Stirling’s formula). For every integer n ≥ 1, we have

√
2π
nn+1/2

en
e

1
12n+1 < n! <

√
2π
nn+1/2

en
e

1
12n , (A.1)

or equivalently, there is θn ∈ (0, 1) such that

n! =
√

2π
nn+1/2

en
e

1
12n+θn . (A.2)

In particular, as n→∞

n! ≈
√

2π
nn+1/2

en
. (A.3)

As usual, here an ≈ bn means that an/bn → 1 as n→∞.

Why nn+1/2

en
?

Before giving a proper proof of Stirling’s formula, let us try to explain why nn+1/2

en

appears. Clearly, log(n!) =
∑n
k=1 log k and because the logarithm is an increasing

function,
∫ k
k−1

log x dx < log k <
∫ k+1

k
log x dx. Adding these inequalities yields∫ n

0

log x dx < log(n!) <

∫ n+1

1

log x dx,

that is (
∫

log x = x log x− x)

n log n− n < log(n!) < (n+ 1) log(n+ 1)− n.

This suggests that log(n!) can be approximated by some sort of mean of n log n−n and

(n+ 1) log(n+ 1)− n. We take (n+ 1
2 ) log n− n.

Another explanation: start with n! =
∫∞

0
xne−xdx and change the variables x = ny,

to get n! = nn+1
∫∞

0
(ye−y)ndy. The function y 7→ ye−y is maximal at y = 1 with

maximum equal to e−1. Rewriting, so that the maximum is at y = 0 and equals 1 gives

n! = nn+1e−n
∫∞
−1

((1+y)e−y)ndy. The Taylor expansion of (1+y)e−y at y = 0 is 1− y2

2

and
∫∞
−1

((1 + y)e−y)ndy, heuristically, is approximately
∫∞
−∞ e−ny

2/2dy =
√

2π
n . This

heuristics in fact gives exactly (A.3) and can be turned into a rigorous proof, which is a

particular instance of the so-called Laplace method (the drawback is that we would not

get precise error estimates as in (A.2)).
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Proof of Stirling’s formula

Now we prove (A.1). As argued above, it makes sense to expect that log(n!) can be

approximated well by (n+ 1
2 ) log n− n, therefore we consider

dn = log(n!)−
[(
n+

1

2

)
log n− n

]
.

We have,

dn − dn+1 =

(
n+

1

2

)
log

n+ 1

n
− 1.

Note that n+1
n =

1+ 1
2n+1

1− 1
2n+1

and for x ∈ (0, 1),

log
1 + x

1− x
= log(1 + x)− log(1− x) = x− x2

2
+
x3

3
− . . .−

(
−x− x2

2
− x3

3
− . . .

)
= 2

(
x+

x3

3
+ . . .

)
,

thus

dn − dn+1 =
2n+ 1

2
log

1 + 1
2n+1

1− 1
2n+1

− 1 =
1

3(2n+ 1)2
+

1

5(2n+ 1)4
+ . . . .

Estimating crudely 1
5 <

1
3 , 1

7 <
1
3 . . ., we get

dn − dn+1 <
1

3

∞∑
k=1

1

(2n+ 1)2k
=

1

3

1

(2n+ 1)2 − 1
=

1

3

1

2n(2n+ 2)
=

1

12n
− 1

12(n+ 1)
,

which means that the sequence

an = dn −
1

12n

is increasing.

On the other hand, estimating below by the first term gives

dn − dn+1 >
1

3(2n+ 1)2
>

1

12n+ 1
− 1

12(n+ 1) + 1

(the second inequality is equivalent to (12n + 1)(12(n + 1) + 1) > 12 · 3(2n + 1)2, that

is 24n+ 13 > 36). This means that the sequence

bn = dn −
1

2n+ 1

is decreasing. Since an < bn, (an) increases, (bn) decreases, (an) is bounded above (by

b1) and (bn) is bounded below (by a1). Thus both (an) and (bn) converge and because

bn − an → 0, they converge to the same limit, say c. Moreover, for every n ≥ 1,

an < c < bn,

that is

log(n!)−
[(
n+

1

2

)
log n− n

]
− 1

12n
< c < log(n!)−

[(
n+

1

2

)
log n− n

]
− 1

12n+ 1
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which can be rewritten as

ec
nn+1/2

en
e

1
12n < n! < ec

nn+1/2

en
e

1
12n+1 .

In other words, if we write

n! = ec
nn+1/2

en
e

1
12n+θn , (A.4)

we have θn ∈ (0, 1). To get (A.1) and (A.2), it remains to show that ec =
√

2π.

Wallis’ formula

To show that ec =
√

2π, we shall use Wallis’ formula which asserts that

π

2
= lim
n→∞

1

2n+ 1

[
2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)

]2

. (A.5)

We give a short proof (it is Wallis’ original elementary proof based on evaluating∫ π/2
0

sinn xdx). Integrating by parts gives∫ π/2

0

sinn x dx =

∫ π/2

0

sinn−1 x(− cosx)′dx = (n− 1)

∫ π/2

0

sinn−2 x cos2 x dx,

which implies

In =
n− 1

n
In−2,

where

In =

∫ π/2

0

sinn x dx.

Plainly, I0 = π
2 and I1 = 1, so iterating gives

I2n =
2n− 1

2n
· 2n− 3

2n− 2
· . . . · 1

2
· π

2
(A.6)

and

I2n+1 =
2n

2n+ 1
· 2n− 2

2n− 1
· . . . · 2

3
. (A.7)

Since sinx ∈ (0, 1) for x ∈ (0, π/2), we have∫ π/2

0

sin2n+1 x dx <

∫ π/2

0

sin2n x dx <

∫ π/2

0

sin2n−1 x dx,

that is

2n

2n+ 1
· 2n− 2

2n− 1
· . . . · 2

3
<

2n− 1

2n
· 2n− 3

2n− 2
· . . . · 1

2
· π

2
<

2n− 2

2n− 1
· 2n− 4

2n− 3
· . . . · 2

3

The left inequality is equivalent to

1

2n+ 1

[
2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)

]2

<
π

2
,

whereas the right one, to

2n

2n+ 1
· π

2
<

1

2n+ 1

[
2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)

]2

.

By the sandwich theorem, we obtain (A.5).
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Evaluation of the constant

Multiplying the numerator and denominator by 2 · 4 · (2n), we get

2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)
=

22n(n!)2

(2n)!
.

Using Wallis’ formula (A.5),

√
π = lim

n→∞

√
2

2n+ 1

2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)
= lim
n→∞

√
2n

2n+ 1

1√
n

22n(n!)2

(2n)!
,

so
1√
n

22n(n!)2

(2n)!
−−−−→
n→∞

√
π.

On the other hand, by (A.4), we have

1√
n

22n(n!)2

(2n)!
=

1√
n

22n e2cn2n+1e−2ne
1

12n+θn

ec(2n)2n+1/2e−2ne
1

24n+θ2n

=
ec√

2
e

1
12n+θn

− 1
24n+θ2n −−−−→

n→∞

ec√
2

(because θn ∈ (0, 1) for every n). Thus ec√
2

=
√
π, which finishes the evaluation of c and

the proof of Theorem A.1.
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