Homework 1 (due 21st Sep)

- 1. Does the set of all extremal points of a compact convex set in \mathbb{R}^n have to be closed?
- **2.** Show that a local minimum of a convex function on \mathbb{R}^n is also its global minimum.
- **3.** Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a convex function. Then f is continuous in the interior of its domain and Lipschitz continuous on any compact subset of that interior.
- 4. Let K be a symmetric convex body in \mathbb{R}^n . Show that its Minkowski functional defined as $p_K(x) = \inf\{t > 0, x \in tK\}$ is a norm on \mathbb{R}^n .
- 5. Show that if K is a closed convex set in \mathbb{R}^n containing the origin, then $(K^\circ)^\circ = K$.
- 6. Show that for a closed convex set K in \mathbb{R}^n containing the origin and an invertible linear map $A \in GL(n)$, we have $(AK)^\circ = (A^T)^{-1}K^\circ$.
- 7. Let K and L be closed convex sets in \mathbb{R}^n containing the origin. Show that

$$\frac{1}{2}(K^{\circ} \cap L^{\circ}) \subset (K+L)^{\circ} \subset K^{\circ} \cap L^{\circ}.$$

8. Let K and L be symmetric convex bodies in \mathbb{R}^n . Show that for $x \in \mathbb{R}^n$, we have

$$\frac{1}{2} \inf_{y \in \mathbb{R}^n} \{ \|y\|_K + \|x - y\|_L \} \le \|x\|_{K+L} \le \inf_{y \in \mathbb{R}^n} \{ \|y\|_K + \|x - y\|_L \}$$

Homework 2 (due 5th Oct)

- **1.** Let X be a random variable with density $\frac{1}{2}e^{-|x|}$ on \mathbb{R} . Show that for every $p \ge 1$, $c_1p \le ||X||_p \le c_2p$ for some absolute constants $c_1, c_2 > 0$.
- 2. Let $f : \mathbb{R}^n \to [0, +\infty)$ be a log-concave function with a finite positive integral. Then there are positive constants A, α such that $f(x) \leq Ae^{-\alpha|x|}$, for all $x \in \mathbb{R}^n$. In particular, for every p > -n, $\int_{\mathbb{R}^n} |x|^p f(x) dx < \infty$.
- **3.** Let $f : \mathbb{R} \to [0, \infty)$ be a centred log-concave function. Then,

$$\frac{1}{12e^2} \le \frac{f(0)^2 \int x^2 f(x) \mathrm{d}x}{\left(\int f\right)^3} \le 2.$$

4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex and 1-Lipschitz function (with respect to the Euclidean distance). Let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ be a random vector of independent random signs. Then for t > 0,

$$\mathbb{P}\left(\left|f(\varepsilon) - \operatorname{Med}(f(\varepsilon))\right| > t\right) \le 4e^{-t^2/8}.$$

- 5. This is Talagrand's example showing that the concentration result above is really specific to convex functions: let $A = \{x \in \{-1,1\}^n, \sum_{i=1}^n x_i \leq 0\}$ and define $f(x) = \inf\{|x-y|, y \in A\}$, which is 1-Lipschitz. Show that the median of $f(\varepsilon)$ is 0, but $\mathbb{P}(f(\varepsilon) > cn^{1/4}) \geq c$, for some absolute constant c > 0.
- **6.** Show that $\cosh x \leq e^{x^2/2}$, for $x \in \mathbb{R}$. Show also that $\cos x \leq e^{-x^2/2}$, for $x \in [0, \frac{\pi}{2}]$.
- 7. This exercise shows how to deduce concentration on the sphere from concentration on Gaussian space. Let $f: S^{n-1} \to \mathbb{R}$ be a 1-Lipschitz function with $\int_{S^{n-1}} f d\sigma = 0$.
 - 1) Show that $||f||_{\infty} \leq 2$.
 - 2) Show that $F : \mathbb{R}^n \to \mathbb{R}$, $F(x) = |x| f\left(\frac{x}{|x|}\right)$ is 4-Lipschitz and $\int_{\mathbb{R}^n} F d\gamma_n = 0$.
 - 3) Using Gaussian concentration for Lipschitz functions (Corollary 3.5), deduce that $\sigma\{f > t\} \le e^{-cnt^2}, t > 0$, with a universal constant c.

Hints: Theorem A.2. It may also help to first show that $\gamma_n(|x| < \frac{1}{100}\sqrt{n}) \leq e^{-c\sqrt{n}}$.

8. Let H be a k-dimensional subspace of \mathbb{R}^n . Show that $\mathbb{E}(\operatorname{dist}(\varepsilon, H))^2 = n - k$. Show that for $1 \le k \le n - 1$,

$$\mathbb{P}\left(\left|\operatorname{dist}(\varepsilon, H) - \sqrt{n-k}\right| > t\right) \le Ce^{-ct^2}, \qquad t > 0,$$

with universal constants c, C > 0. (This concentration result, established by Tao and Vu, is a cornerstone in the study of singularity of random ± 1 matrices.)

Homework 3 (due 22nd Oct)

1. Show the following analogue of the Brunn-Minkowski inequality: for $n \times n$ positive semi-definite real matrices A and B, we have

$$\left[\det(A+B)\right]^{1/n} \ge \left[\det(A)\right]^{1/n} + \left[\det(B)\right]^{1/n}.$$

- **2.** Find the isotropic constant of an *n*-simplex in \mathbb{R}^n .
- **3.** Show that for every $n \ge 3$ and every $\varepsilon > 0$, there is a symmetric convex body K in \mathbb{R}^n with volume 1 such that

$$\int_{S^{n-1}} \operatorname{vol}_{n-1}(K \cap \theta^{\perp}) \mathrm{d}\sigma(\theta) < \varepsilon.$$

This shows that in general it is not possible to prove the slicing conjecture by a simple probabilistic argument. What about $n \leq 2$?

4. Let X be a random variable. Show that the function $t \mapsto \log \mathbb{E}e^{tX}$ is convex on \mathbb{R} and the function $p \mapsto \log \|X\|_{1/p}$ is convex on $(0, \infty)$.

Homework 4 (due 12th Nov)

1. Show that for an *n*-dimensional space $X = (\mathbb{R}^n, \|\cdot\|)$, we have

$$\frac{M}{b} \ge \frac{c}{\sqrt{n}}$$

with a universal constant c > 0. Here $M = \int_{S^{n-1}} \|\theta\| d\sigma(\theta)$ is the mean norm and $b = \max_{\theta \in S^{n-1}} \|\theta\|$ is the Lipschitz constant of $\|\cdot\|$.

- **2.** Let *P* be a polytope with facets F_1, \ldots, F_m . Show that $P = \bigcap_{j=1}^m H_j$, where the H_j are half-spaces corresponding to the supporting hyperplanes of the facets F_j . Show that such a representation of *P* is minimal in the sense that if $P = \bigcap_{i \in I} E_i$ for some half-spaces E_i and a finite set of indices *I*, then $\{F_1, \ldots, F_m\} \subset \{E_i, i \in I\}$.
- **3.** Let $P = \operatorname{conv}\{\pm x_i\}_{i=1}^N$ be a symmetric polytope in \mathbb{R}^n . Show that $P^\circ = \bigcap_{i=1}^N \{x \in \mathbb{R}^n, |\langle x, x_i \rangle| \le 1\}$ and conclude that the number of facets of P is equal to the number of vertices of the dual P° .
- **4.** Show that $d_{BM}(\ell_1^n, \ell_\infty^n) \leq \sqrt{n}$ for every $n = 2^m, m = 1, 2, \ldots$ Show also that $d_{BM}(\ell_1^n, \ell_\infty^n) \geq \frac{\sqrt{n}}{e}$ for every $n = 1, 2, \ldots$

Final exam (take-home, due 7th Dec)

- **1.** Let g be a standard Gaussian random variable. Show that for every $p \ge 1$, we have $c_1\sqrt{p} \le ||g||_p \le c_2\sqrt{p}$ for some universal constants $c_1, c_2 > 0$.
- **2.** Show that for $n \times n$ positive definite real matrices A, B and $\lambda \in [0, 1]$, we have

$$\log\left[\det(\lambda A + (1-\lambda)B)\right] \ge \lambda \log\left[\det(A)\right] + (1-\lambda)\log\left[\det(B)\right]$$

and for $\alpha > 0$,

$$\left[\det(\lambda A + (1-\lambda)B)\right]^{-\alpha} \le \lambda \left[\det(A)\right]^{-\alpha} + (1-\lambda)\left[\det(B)\right]^{-\alpha}.$$

- **3.** For $p \in [1, \infty]$, find the ellipsoid of maximal volume in B_p^n .
- **4.** Let X be a log-concave random variable. Let a be such that $\mathbb{P}(X > a) \leq e^{-1}$. Then $\mathbb{E}X \leq a$.
- 5. Let K be a centred convex body of volume 1 in \mathbb{R}^n . For a unit vector θ consider $K_{\theta} = K \cap \{x \in \mathbb{R}^n, \langle x, \theta \rangle \geq 0\}$. Show that $e^{-1} \leq |K_{\theta}| \leq 1 e^{-1}$. (In words, any hyperplane passing through the barycentre of a convex body divides in into two pieces of roughly the same volume Grünbaum's lemma.)
- **6.** Let f and g be densities of two independent symmetric log-concave random variables X and Y. Let $\lambda \in [0, 1]$ and let h be the density of $\lambda X + (1 \lambda)Y$. Is it true that

$$-\int h\log h \leq \max\left\{-\int f\log f, -\int g\log g\right\}?$$

Remark. This is an open problem.