
21-801 Convex Geometry TT

Homework 1 (due 21st Sep)

1. Does the set of all extremal points of a compact convex set in Rn have to be closed?

2. Show that a local minimum of a convex function on Rn is also its global minimum.

3. Let f : Rn → (−∞,+∞] be a convex function. Then f is continuous in the interior

of its domain and Lipschitz continuous on any compact subset of that interior.

4. Let K be a symmetric convex body in Rn. Show that its Minkowski functional

defined as pK(x) = inf{t > 0, x ∈ tK} is a norm on Rn.

5. Show that if K is a closed convex set in Rn containing the origin, then (K◦)◦ = K.

6. Show that for a closed convex set K in Rn containing the origin and an invertible

linear map A ∈ GL(n), we have (AK)◦ = (AT )−1K◦.

7. Let K and L be closed convex sets in Rn containing the origin. Show that

1

2
(K◦ ∩ L◦) ⊂ (K + L)◦ ⊂ K◦ ∩ L◦.

8. Let K and L be symmetric convex bodies in Rn. Show that for x ∈ Rn, we have

1

2
inf
y∈Rn
{‖y‖K + ‖x− y‖L} ≤ ‖x‖K+L ≤ inf

y∈Rn
{‖y‖K + ‖x− y‖L}.
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21-801 Convex Geometry TT

Homework 2 (due 5th Oct)

1. Let X be a random variable with density 1
2e
−|x| on R. Show that for every p ≥ 1,

c1p ≤ ‖X‖p ≤ c2p for some absolute constants c1, c2 > 0.

2. Let f : Rn → [0,+∞) be a log-concave function with a finite positive integral. Then

there are positive constants A,α such that f(x) ≤ Ae−α|x|, for all x ∈ Rn. In

particular, for every p > −n,
∫
Rn |x|pf(x)dx <∞.

3. Let f : R→ [0,∞) be a centred log-concave function. Then,

1

12e2
≤
f(0)2

∫
x2f(x)dx(∫
f
)3 ≤ 2.

4. Let f : Rn → R be a convex and 1-Lipschitz function (with respect to the Euclidean

distance). Let ε = (ε1, . . . , εn) be a random vector of independent random signs.

Then for t > 0,

P (|f(ε)−Med(f(ε))| > t) ≤ 4e−t
2/8.

5. This is Talagrand’s example showing that the concentration result above is really

specific to convex functions: let A = {x ∈ {−1, 1}n,
∑n
i=1 xi ≤ 0} and define

f(x) = inf{|x− y|, y ∈ A}, which is 1-Lipschitz. Show that the median of f(ε) is 0,

but P
(
f(ε) > cn1/4

)
≥ c, for some absolute constant c > 0.

6. Show that coshx ≤ ex2/2, for x ∈ R. Show also that cosx ≤ e−x2/2, for x ∈ [0, π2 ].

7. This exercise shows how to deduce concentration on the sphere from concentration

on Gaussian space. Let f : Sn−1 → R be a 1-Lipschitz function with
∫
Sn−1 fdσ = 0.

1) Show that ‖f‖∞ ≤ 2.

2) Show that F : Rn → R, F (x) = |x|f
(
x
|x|

)
is 4-Lipschitz and

∫
Rn Fdγn = 0.

3) Using Gaussian concentration for Lipschitz functions (Corollary 3.5), deduce that

σ{f > t} ≤ e−cnt2 , t > 0, with a universal constant c.

Hints: Theorem A.2. It may also help to first show that γn(|x| < 1
100

√
n) ≤ e−c

√
n.

8. Let H be a k-dimensional subspace of Rn. Show that E(dist(ε,H))2 = n− k. Show

that for 1 ≤ k ≤ n− 1,

P
(
|dist(ε,H)−

√
n− k| > t

)
≤ Ce−ct

2

, t > 0,

with universal constants c, C > 0. (This concentration result, established by Tao and

Vu, is a cornerstone in the study of singularity of random ±1 matrices.)
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21-801 Convex Geometry TT

Homework 3 (due 22nd Oct)

1. Show the following analogue of the Brunn-Minkowski inequality: for n × n positive

semi-definite real matrices A and B, we have

[
det(A+B)

]1/n ≥ [det(A)
]1/n

+
[

det(B)
]1/n

.

2. Find the isotropic constant of an n-simplex in Rn.

3. Show that for every n ≥ 3 and every ε > 0, there is a symmetric convex body K in

Rn with volume 1 such that∫
Sn−1

voln−1(K ∩ θ⊥)dσ(θ) < ε.

This shows that in general it is not possible to prove the slicing conjecture by a

simple probabilistic argument. What about n ≤ 2?

4. Let X be a random variable. Show that the function t 7→ logEetX is convex on R

and the function p 7→ log ‖X‖1/p is convex on (0,∞).
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21-801 Convex Geometry TT

Homework 4 (due 12th Nov)

1. Show that for an n-dimensional space X = (Rn, ‖ · ‖), we have

M

b
≥ c√

n

with a universal constant c > 0. Here M =
∫
Sn−1 ‖θ‖dσ(θ) is the mean norm and

b = maxθ∈Sn−1 ‖θ‖ is the Lipschitz constant of ‖ · ‖.

2. Let P be a polytope with facets F1, . . . , Fm. Show that P =
⋂m
j=1Hj , where the Hj

are half-spaces corresponding to the supporting hyperplanes of the facets Fj . Show

that such a representation of P is minimal in the sense that if P =
⋂
i∈I Ei for some

half-spaces Ei and a finite set of indices I, then {F1, . . . , Fm} ⊂ {Ei, i ∈ I}.

3. Let P = conv{±xi}Ni=1 be a symmetric polytope in Rn. Show that P ◦ =
⋂N
i=1{x ∈

Rn, |〈x, xi〉| ≤ 1} and conclude that the number of facets of P is equal to the number

of vertices of the dual P ◦.

4. Show that dBM (`n1 , `
n
∞) ≤

√
n for every n = 2m, m = 1, 2, . . .. Show also that

dBM (`n1 , `
n
∞) ≥

√
n
e for every n = 1, 2, . . ..
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21-801 Convex Geometry TT

Final exam (take-home, due 7th Dec)

1. Let g be a standard Gaussian random variable. Show that for every p ≥ 1, we have

c1
√
p ≤ ‖g‖p ≤ c2

√
p for some universal constants c1, c2 > 0.

2. Show that for n× n positive definite real matrices A, B and λ ∈ [0, 1], we have

log
[

det(λA+ (1− λ)B)
]
≥ λ log

[
det(A)

]
+ (1− λ) log

[
det(B)

]
and for α > 0,

[
det(λA+ (1− λ)B)

]−α ≤ λ[ det(A)
]−α

+ (1− λ)
[

det(B)
]−α

.

3. For p ∈ [1,∞], find the ellipsoid of maximal volume in Bnp .

4. Let X be a log-concave random variable. Let a be such that P (X > a) ≤ e−1. Then

EX ≤ a.

5. Let K be a centred convex body of volume 1 in Rn. For a unit vector θ consider

Kθ = K ∩ {x ∈ Rn, 〈x, θ〉 ≥ 0}. Show that e−1 ≤ |Kθ| ≤ 1 − e−1. (In words,

any hyperplane passing through the barycentre of a convex body divides in into two

pieces of roughly the same volume – Grünbaum’s lemma.)

6. Let f and g be densities of two independent symmetric log-concave random variables

X and Y . Let λ ∈ [0, 1] and let h be the density of λX + (1− λ)Y . Is it true that

−
∫
h log h ≤ max

{
−
∫
f log f,−

∫
g log g

}
?

Remark. This is an open problem.
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