1. Let X be a random variable with the distribution function

$$
F(t)= \begin{cases}0, & t<1 \\ \frac{1}{3}(t-1)^{2}, & 1 \leq t<2, \\ 1, & t \geq 2\end{cases}
$$

Find $\mathbb{P}(X \geq 1), \mathbb{P}(X=2)$ and $\mathbb{P}(X>2)$. Is X a continuous random variable? Find the distribution function of $Y=(X-1)^{2}$.
2. Let g be a standard Gaussian random variable. Find $\mathbb{E} e^{g^{2} / 4}$. Find all $c \in \mathbb{R}$ such that $\mathbb{E} e^{c g^{2}}$ is finite. Let $g_{1}, g_{2}, \ldots, g_{n}$ be independent standard Gaussian random variables. What is the distribution of $g_{1}+\ldots+g_{n}$? Find the set of all points $a=\left(a_{1}, \ldots, a_{n}\right)$ in \mathbb{R}^{n} for which $\mathbb{E} e^{\left(a_{1} g_{1}+\ldots+a_{n} g_{n}\right)^{2}}$ is finite.
3. Let f be a continuous function on $[0,1]$ taking values in $[0,1]$. Let $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be independent random variables uniformly distributed on [0, 1]. Define $Z_{i}=\mathbf{1}_{\left\{f\left(X_{i}\right)>Y_{i}\right\}}$. Show that $\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ converges almost surely to $\int_{0}^{1} f$.

