1. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $\mathbb{P}(X=Y)=1$ (in other words, the limit in probability is unique).
2. Let X be an integrable random variable and define

$$
X_{n}= \begin{cases}-n, & X<-n \\ X, & |X| \leq n \\ n, & X>n\end{cases}
$$

Does the sequence X_{n} converge a.s., in L_{1}, in probability?
3. Let X_{1}, X_{2}, \ldots be i.i.d. integrable random variables. Prove that $\frac{1}{n} \max _{k \leq n}\left|X_{k}\right|$ converges to 0 in probability.
4. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $X_{n}+Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X+Y$.
5. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ and $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$, then $X_{n} Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X Y$.
6. Prove that a sequence of random variables X_{n} converges a.s. if and only if for every $\varepsilon>0, \lim _{N \rightarrow \infty} \mathbb{P}\left(\bigcap_{n, m \geq N}\left|X_{n}-X_{m}\right|<\varepsilon\right)=1$ (the Cauchy condition).
7. Does a sequence of independent random signs $\varepsilon_{1}, \varepsilon_{2}, \ldots$ converge a.s.?
8. Let X_{1}, X_{2}, \ldots be independent random variables, $X_{n} \sim \operatorname{Poiss}(1 / n)$. Does the sequence X_{n} converge a.s., in L_{2}, in probability?

