1. Let X be a nonnegative random variable. Show that for $p>0$ we have

$$
\mathbb{E} X^{p}=\int_{0}^{\infty} p t^{p-1} \mathbb{P}(X>t) \mathrm{d} t
$$

2. Let X be a random variable such that $\mathbb{E}|X|^{p}<\infty$ for some $p>0$. Show that $\lim _{t \rightarrow \infty} t^{p} \mathbb{P}(|X|>t)=0$.
3. Show that the probability that in n throws of a fair die the number of sixes lies between $\frac{1}{6} n-\sqrt{n}$ and $\frac{1}{6} n+\sqrt{n}$ is at least $\frac{31}{36}$.
4. Let X be a random variable with values in an interval $[0, a]$. Show that for every t in this interval we have

$$
\mathbb{P}(X \geq t) \geq \frac{\mathbb{E} X-t}{a-t}
$$

5. Prove the Payley-Zygmund inequality: for a nonnegative random variable X and every $\theta \in[0,1]$ we have

$$
\mathbb{P}(X>\theta \mathbb{E} X) \geq(1-\theta)^{2} \frac{(\mathbb{E} X)^{2}}{\mathbb{E} X^{2}}
$$

6. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent random signs. Prove that there is a positive constant c such that for every $n \geq 1$ and real numbers a_{1}, \ldots, a_{n} we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|>\frac{1}{2} \sqrt{\sum_{i=1}^{n} a_{i}^{2}}\right) \geq c
$$

Hint. Use the Paley-Zygmund inequality and Q4 HW5.
7. Prove that for nonnegative random variables X and Y we have

$$
\mathbb{E} \frac{X}{Y} \geq \frac{(\mathbb{E} \sqrt{X})^{2}}{\mathbb{E} Y}
$$

8. Suppose that $X=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector uniformly distributed on the cube $[-\sqrt{3}, \sqrt{3}]^{n}$. Show that X_{1}, \ldots, X_{n} are independent. Find $\mathbb{E} X_{i}, \mathbb{E} X_{i}^{2}$ and $\operatorname{Var}\left(X_{i}^{2}\right)$. Let $\|X\|=\sqrt{X_{1}^{2}+\ldots+X_{n}^{2}}$ denote the distance from the point X to the origin. Show

$$
\mathbb{E}|\|X\|-\sqrt{n}|^{2}<1
$$

Conclude that for $t>0$,

$$
\mathbb{P}(|\|X\|-\sqrt{n}|>t)<\frac{1}{t^{2}}
$$

In particular, $\mathbb{P}(|\|X\|-\sqrt{n}|>10) \leq 1 / 100$, which implies that a random point X lands in the thin shell of width 20 around the sphere with radius \sqrt{n} with probability greater than 99/100 (think of n as being large).

