1. Is the function $G(x, y)=\mathbf{1}_{\{x+y \geq 0\}}$ the distribution function of some random vector in \mathbb{R}^{2} ? Explain.
2. Let X and Y be independent exponential random variables with parameters λ and μ. Show that $\min \{X, Y\}$ has the exponential distribution with parameter $\lambda+\mu$.
3. If X has the exponential distribution, show the lack of memory property: for every positive s and t,

$$
\mathbb{P}(X>s+t \mid X>s)=\mathbb{P}(X>t)
$$

4. Let X_{1}, \ldots, X_{n} be independent exponential random variables with parameter 1. Find the distribution function of $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. What is the pointwise limit of the distribution function F_{n} of $Y_{n}-\log n$? Is the limiting function a distribution function?
5. Let X_{1}, X_{2}, \ldots be i.i.d. continuous random variables. Define N as the unique index such that

$$
X_{1} \geq X_{2} \geq \ldots \geq X_{N-1} \text { and } X_{N-1}<X_{N}
$$

Prove that $\mathbb{P}(N=k)=(k-1) / k!, k=1,2, \ldots$ and find $\mathbb{E} N$.
6. Find a constant C such that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given as $f(x, y)=\frac{C}{\left(1+x^{2}+y^{2}\right)^{3 / 2}}$ is a density function. Show that both marginals have the Cauchy distribution.
7. Let X_{1}, X_{2}, \ldots be independent exponential random variables with parameter 1 . Show that for every n, the distribution of $X_{1}+\ldots+X_{n}$ is $\operatorname{Gamma}(n)$.
8. Let (X, Y) be a random vector in \mathbb{R}^{2} with density $f(x, y)=c x y \mathbf{1}_{0<x<y<1}$. Find c and $\mathbb{P}(X+Y<1)$. Are X and Y independent? Find the density of $(X / Y, Y)$. Are X / Y and Y independent? What is the conditional density of X given $Y=y$?
9. Let X and Y be independent standard Gaussian random variables. Show that X / Y has the Cauchy distribution. Find $\mathbb{P}\left(X^{2}+Y^{2}<a\right)$ for $a>0$ and $\mathbb{E} \sqrt{X^{2}+Y^{2}}$.

10* Let X be a standard Gaussian random variable and Y be an exponential random variable with parameter 1 . Show that $\sqrt{2 Y} X$ has the symmetric (two-sided) exponential distribution with parameter 1.

