1. Find the expected value and variance of the distributions: $\operatorname{Ber}(p), \operatorname{Bin}(n, p), \operatorname{Poiss}(\lambda)$, $\operatorname{Geom}(p)$, for $p \in(0,1), \lambda \in(0, \infty), n \in\{1,2, \ldots\}$.
2. Let X be a Poisson random variable with parameter λ. Show that for any nonnegative integer k we have

$$
\mathbb{E} X(X-1) \cdot \ldots \cdot(X-k)=\lambda^{k+1}
$$

3. Let X be a discrete random variable taking values in the set of nonnegative integers. Show that

$$
\mathbb{E} X=\sum_{k=0}^{\infty} \mathbb{P}(X>k) .
$$

Show the following generalisation: for an increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=0$,

$$
\mathbb{E} f(X)=\sum_{k=0}^{\infty}[f(k+1)-f(k)] \cdot \mathbb{P}(X>k) .
$$

4. We throw repeatedly a fair die which has two faces coloured red, two yellow and two green. Let X be the random variable which takes the value n if all three colours occur in the first n throws but only two of the colours occur in the first $n-1$ throws. Find the expected value of X. Hint: You may first want to compute the probability that not all colours occur in the first k throws and use the formula from $Q 3$.
5. We toss repeatedly a biased coin showing heads with probability $p \in(0,1)$. Let X be the number of tosses until n heads have occurred in a row. Find the expectation of X.
6. Let X and Y be discrete random variables, each taking two distinct values. Show that X and Y are independent if and only if $\mathbb{E} X Y=\mathbb{E} X \cdot \mathbb{E} Y$.
7. Let X and Y be independent Poisson random variables with parameters λ and μ. Show that $X+Y$ is a Poisson random variable with parameter $\lambda+\mu$.
8. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ be independent random signs. Show that the vectors $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-1}\right)$ and ($\varepsilon_{1} \varepsilon_{2}, \varepsilon_{2} \varepsilon_{3}, \ldots, \varepsilon_{n-1} \varepsilon_{n}$) have the same distribution. In particular, the variables $\varepsilon_{1} \varepsilon_{2}, \varepsilon_{2} \varepsilon_{3}, \ldots, \varepsilon_{n-1} \varepsilon_{n}$ are independent. Are the variables $\varepsilon_{1} \varepsilon_{2}, \varepsilon_{2} \varepsilon_{3}, \varepsilon_{3} \varepsilon_{1}$ independent?
9. Let X be a discrete random variable. Show that X is zero with probability one if and only if $\mathbb{E} X^{2}=0$. Suppose that the expectation of X exists. Show that X has variance zero if and only if $X=\mathbb{E} X$.

10* Show that the number of σ-fields on the n-element set equals $\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}$.

