1. Show that for positive $t, \int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \leq \frac{1}{t} e^{-t^{2} / 2}$ and $\int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \leq \sqrt{\frac{\pi}{2}} e^{-t^{2} / 2}$. Conclude that for a standard Gaussian random variable Z and positive t,

$$
\mathbb{P}(Z>t) \leq \frac{1}{\sqrt{2 \pi}} \min \left\{\frac{1}{t}, \sqrt{\frac{\pi}{2}}\right\} e^{-t^{2} / 2}
$$

2. Find the characteristic functions of random variables with distribution $\operatorname{Ber}(p), \operatorname{Bin}(n, p)$, Poiss (λ), Unif([-1, 1]).
3. Let X_{1}, X_{2}, \ldots be random variables such that $\mathbb{P}\left(X_{n}=\frac{k}{n}\right)=\frac{1}{n}, k=1, \ldots, n, n=$ $1,2, \ldots$. Does the sequence $\left(X_{n}\right)$ converge in distribution? If yes, find the limiting distribution.
4. Let U_{1}, U_{2}, \ldots be i.i.d. random variables uniformly distributed on $[0,1]$. Let $X_{n}=$ $\min \left\{U_{1}, \ldots, U_{n}\right\}$. Show that $\mathbb{E} X_{n}=\frac{1}{n+1}$. Show that $n X_{n}$ converges in distribution to an exponential random variable with parameter one.
5. Let S be the number of ones when throwing a fair die 18000 times. Find a good approximation to $\mathbb{P}(2950<S<3050)$. How can you bound the error you make?
6. Let G be a standard Gaussian random vector in \mathbb{R}^{n}. Let $\|G\|=\sqrt{G_{1}^{2}+\ldots+G_{n}^{2}}$ be its magnitude. Let $a_{n}=\mathbb{P}(\sqrt{n}-1 \leq\|G\| \leq \sqrt{n}+1)$. Find $a=\lim _{n \rightarrow \infty} a_{n}$ and show that $\left|a_{n}-a\right| \leq \frac{8}{\sqrt{n}}$ for all $n \geq 1$.
7. Show that $e^{-n} \sum_{k=1}^{n} \frac{n^{k}}{k!} \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2}$.

Hint: Poiss(n) random variable is a sum of n i.i.d. Poiss(1) random variables.
8. Suppose that X, X_{1}, X_{2}, \ldots are nonnegative integer-valued random variables. Show that $X_{n} \xrightarrow[n \rightarrow \infty]{d} X$, if and only if $\mathbb{P}\left(X_{n}=k\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}(X=k)$, for every $k=0,1,2, \ldots$.
9. Let X_{1}, X_{2}, \ldots be i.i.d. standard Cauchy random variables. Show that for any reals a_{1}, \ldots, a_{n}, the sum $a_{1} X_{1}+\ldots+a_{n} X_{n}$ has the same distribution as $\left(\left|a_{1}\right|+\ldots+\left|a_{n}\right|\right) X_{1}$.
10. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be i.i.d. random signs. Show that $X_{n}=\sum_{k=1}^{n} \frac{\varepsilon_{k}}{2^{k}}$ converges in distribution to a random variable uniformly distributed on $(-1,1)$.
11. Suppose that a random variable X with variance one has the following property: $\frac{X+X^{\prime}}{\sqrt{2}}$ has the same distribution as X, where X^{\prime} is an independent copy of X. Show that $X \sim N(0,1)$.

