1. How many different sequences do we obtain by permuting the letters of the following words: a) DERMATOGLYPHICS b) INTESTINES c) CHINCHERINCHEE ? Explain.
2. Consider the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=15$. How many nonnegative integer solutions does it have? How about positive integer solutions? How many nondecreasing functions $f:\{1,2, \ldots, 15\} \rightarrow\{1,2,3,4,5\}$ are there? Hint: oranges and boxes.
3. You are dealt a poker hand of five cards from a regular deck of 52 . What is the chance that you get two pairs (but not four of a kind or a full house)?
4. A certain planet has $n$ days in one year. What is the probability that among $k$ people on that planet there are (at least) two who share their birthday?
5. Prove that for any events $A_{1}, A_{2}, \ldots$ we have

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

6. Prove that for any events $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ we have the inclusion-exclusion formula

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)= & \sum_{1 \leq i \leq n} \mathbb{P}\left(A_{i}\right)-\sum_{1 \leq i<j \leq n} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{1 \leq i<j<k \leq n} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& -\ldots+(-1)^{n-1} \mathbb{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) .
\end{aligned}
$$

7. Suppose that events $A$ and $B$ satisfy $\mathbb{P}(A \cup B)=1 / 2, \mathbb{P}(A \cap B)=1 / 4$ and $\mathbb{P}(A \backslash B)=$ $\mathbb{P}(B \backslash A)$. Find $\mathbb{P}(A)$.
8. Suppose that events $A, B$ and $C$ satisfy $\mathbb{P}(A \cap B \cap C)=0$ and each of them has probability not smaller than $2 / 3$. Find $\mathbb{P}(A)$.
9. There are $n$ pairs of shoes in a closet. Pick at random $k$ shoes $(k<n)$. What is the probability that a) at least one pair of shoes has been picked b) exactly one pair of shoes has been picked?
10. Let $A_{1}, A_{2}, \ldots, A_{n}$ be elements of a $\sigma$-field $\mathcal{F}$. Show that for every $k \in\{1,2, \ldots, n\}$ the set of all elements which belong to exactly $k$ of the $A_{i}$ is also an element of $\mathcal{F}$.
