Instructions

Time: 180 minutes

Books, notes, calculators, or any electronic devices are not allowed
Please write down your solutions for each question on an individual sheet
Please write down your name on each sheet in capital letters
Each question is worth 5 points. Question 7 is for extra credit and may be harder

Questions

1. You are dealt a poker hand of five cards from a regular deck of 52 . What is the chance that you get three of a kind, e.g., three 7s or three aces (but not four of a kind or a full house)?
2. Find the probability generating function of a Poisson random variable with parameter λ. Let X_{1}, \ldots, X_{n} be independent random variables with the Poisson distribution, each with parameter 1. Find the probability generating function of $S_{n}=X_{1}+\ldots+X_{n}$. What is the distribution of S_{n} ? What is the mean and variance of S_{n} ? Prove that for positive $t, \mathbb{P}\left(S_{n} \geq(1+t) n\right) \leq \frac{1}{t^{2} n}$. Show that $\lim _{n \rightarrow \infty} e^{-n} \sum_{k \geq 1.1 n} \frac{n^{k}}{k!}=0$.
3. Let X be a random variable with density $f(x)=\frac{1}{2} e^{-|x|}$. Find $\mathbb{E} X$ and $\mathbb{E}|X|$. Find the distribution function of X^{2}.
4. Let S_{n} be the number of heads after throwing n times a biased coin showing heads with probability $1 / 3$. What is the mean and variance of S_{n} ? Show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}>n / 3+\sqrt{n}\right)=\int_{\frac{3}{\sqrt{2}}}^{\infty} e^{-x^{2} / 2} \frac{\mathrm{~d} x}{\sqrt{2 \pi}}
$$

5. What is the density of a standard Gaussian random variable, that is a Gaussian random variable with mean zero and variance one? Let X and Y be independent standard Gaussian random variables. What is the distribution of $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$? Are the variables X and $X+Y$ independent? Are the variables $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$ and $\frac{\sqrt{3}}{2} X+\frac{1}{2} Y$ independent? Find the density of $\sqrt{X^{2}+Y^{2}}$.
6. Let f be a continuous function on $[0,1]$. Find $\lim _{n \rightarrow \infty} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$ (or show it does not exist).

7* Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be independent random signs. Let $X_{n}=\frac{2}{n} \sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j}$. Does the sequence X_{n} converge in distribution? If yes, find its limit.

