Probability 21-325

Final exam

Instructions

Time: 180 minutes

Books, notes, calculators, or any electronic devices **are not allowed** Please write down your solutions for each question on an **individual** sheet Please write down your name on each sheet in **capital** letters Each question is worth 5 points. Question 7 is for extra credit and may be harder

Questions

- 1. You are dealt a poker hand of five cards from a regular deck of 52. What is the chance that you get three of a kind, e.g., three 7s or three aces (but not four of a kind or a full house)?
- 2. Find the probability generating function of a Poisson random variable with parameter λ . Let X_1, \ldots, X_n be independent random variables with the Poisson distribution, each with parameter 1. Find the probability generating function of $S_n = X_1 + \ldots + X_n$. What is the distribution of S_n ? What is the mean and variance of S_n ? Prove that for positive t, $\mathbb{P}(S_n \ge (1+t)n) \le \frac{1}{t^2n}$. Show that $\lim_{n\to\infty} e^{-n} \sum_{k\ge 1.1n} \frac{n^k}{k!} = 0$.
- **3.** Let X be a random variable with density $f(x) = \frac{1}{2}e^{-|x|}$. Find $\mathbb{E}X$ and $\mathbb{E}|X|$. Find the distribution function of X^2 .
- 4. Let S_n be the number of heads after throwing n times a biased coin showing heads with probability 1/3. What is the mean and variance of S_n ? Show that

$$\lim_{n \to \infty} \mathbb{P}\left(S_n > n/3 + \sqrt{n}\right) = \int_{\frac{3}{\sqrt{2}}}^{\infty} e^{-x^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}}$$

- 5. What is the density of a standard Gaussian random variable, that is a Gaussian random variable with mean zero and variance one? Let X and Y be independent standard Gaussian random variables. What is the distribution of $\frac{1}{2}X \frac{\sqrt{3}}{2}Y$? Are the variables X and X + Y independent? Are the variables $\frac{1}{2}X \frac{\sqrt{3}}{2}Y$ and $\frac{\sqrt{3}}{2}X + \frac{1}{2}Y$ independent? Find the density of $\sqrt{X^2 + Y^2}$.
- **6.** Let f be a continuous function on [0, 1]. Find $\lim_{n\to\infty} \int_0^1 \dots \int_0^1 f\left(\frac{x_1+\dots+x_n}{n}\right) dx_1 \dots dx_n$ (or show it does not exist).
- 7^{*} Let $\varepsilon_1, \varepsilon_2, \ldots$ be independent random signs. Let $X_n = \frac{2}{n} \sum_{1 \le i < j \le n} \varepsilon_i \varepsilon_j$. Does the sequence X_n converge in distribution? If yes, find its limit.