Combinatorics, Rerm ${ }_{2}^{2014 / 2015}$ REVISION LECTURE
 Term 3 2014/2015

Problems

1. Show that for a positive integer n we have

$$
\sum_{k=0}^{n}\binom{n+k}{n} \frac{1}{2^{k}}=2^{n}
$$

2. Prove that for a positive integer n we have

$$
\sum_{k=1}^{n} k\binom{n}{k}^{2}=n\binom{2 n-1}{n-1}
$$

3. Determine the number of functions $f:\{1, \ldots, m\} \longrightarrow\{1, \ldots, n\}$ which are a) strictly increasing, b) nondecreasing, c) surjective.
4. Show the following formula for the exponential generating function of the Stirling numbers of the second kind

$$
\sum_{n=k}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

5. In how many ways u_{n} can one mount a staircase with n steps if every movement involves only one or two steps?
6. Let D_{n} be the number of sequences $\left(x_{1}, \ldots, x_{2 n}\right)$ such that $x_{1}, \ldots, x_{2 n}$ take values $\pm 1, x_{1}+\ldots+x_{k} \geq 0$ for every $1 \leq k \leq 2 n$ and $x_{1}+\ldots+x_{2 n}=0$. Prove that

$$
D_{n}=D_{n-1}+D_{1} D_{n-2}+\ldots+D_{n-1}
$$

and conclude $D_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
7. Let T_{1}, \ldots, T_{k} be subtrees of a tree T with the property that each two of them have at least one vertex in common. Show that all of them has at least one vertex in common.
8. Let d_{1}, \ldots, d_{n} be positive integers such that $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. Show that there exists a tree with n vertices of degrees d_{1}, \ldots, d_{n} if and only if

$$
\mathrm{d}_{1}+\ldots+\mathrm{d}_{\mathrm{n}}=2 \mathrm{n}-2 .
$$

9. Suppose that the vertices of a maximal plane graph are coloured with 3 colours. Show that the number of faces whose vertices have all three colours is even.
10. Suppose that a plane graph on $n \geq 3$ vertices contains no triangle. Show that it has at most $2 n-4$ edges.
11. Recall that $R_{k}(3)$ is the smallest number n such no matter how K_{n} is k-coloured, it contains a monochromatic triangle. It was shown in Assignment 4 that

$$
R_{k}(3) \leq\lfloor k!e\rfloor+1 .
$$

Prove that

$$
R_{k}(3) \geq 2^{k}+1
$$

Solutions

1. We will prove the desired identity by making up a story. Let us count the number of $0-1$ sequences of length $2 n+1$ in a particular way. Notice that in every such sequence either 0 or 1 is repeated at least $\mathfrak{n}+1$ times. Thus for $k=0, \ldots, n$ let A_{k} be the set of all such sequences for which 1 is repeated the $n+1^{\text {st }}$ time only at the $n+1+k^{\text {th }}$ place. We have

$$
\left|A_{k}\right|=\binom{n+k}{k} \cdot 2^{2 n+1-(n+k+1)}
$$

because every sequence in A_{k} looks like

$$
\underbrace{\star \star \star \star \ldots \star}_{\begin{array}{c}
n+\text { terms } \\
\text { containing } \\
\text { exactly } n \text { 's }
\end{array}} 1 \underbrace{\star \star \star \star \ldots \ldots \star}_{2 n+1-(n+k+1)} .
$$

By symmetry we get

$$
2^{2 n+1}=2 \sum_{k=0}^{n}\left|A_{k}\right|=2 \sum_{k=0}^{n}\binom{n+k}{n} 2^{n-k}
$$

which gives

$$
2^{n}=\sum_{k=0}^{n}\binom{n+k}{n} 2^{-k}
$$

2. Suppose we have n men and n women and from these $2 n$ people we want to select a team of n people with a female captain. We can do it in $n\binom{2 n-1}{n-1}$ ways by first selecting the female captain and then choosing $n-1$ people among the remaining $2 n-1$. On the other hand, for $k=1, \ldots, n$ we can first choose k
women in $\binom{n}{k}$ ways, among them choose the captain in k ways and then choose $\mathrm{n}-\mathrm{k}$ men in $\binom{n}{n-k}=\binom{\mathrm{n}}{\mathrm{k}}$ ways.

Another solution. We have

$$
\begin{aligned}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k}, \\
n(1+x)^{n-1} & =\sum_{k=1}^{n} k\binom{n}{k} x^{k-1} .
\end{aligned}
$$

Multiplying these identities and equating the coefficients at x^{n-1} yields the result.
3. a) We want to choose $f(1), \ldots, f(m)$ so that $1 \leq f(1)<\ldots<f(m) \leq n$. Therefore we want to choose m distinct numbers among $1, \ldots, n$. There are $\binom{n}{m}$ such choices.
b) Now we require $1 \leq f(1) \leq \ldots \leq f(m) \leq n$. In other words, we want to select m numbers among $1, \ldots, n$ allowing repetitions, or put m oranges into n boxes. Therefore, there are $\binom{n-1+m}{m}$ such choices.
c) For $i=1, \ldots, n$, let A_{i} be the set of functions $f:\{1, \ldots, m\} \longrightarrow\{1, \ldots, n\}$ not taking value i. We have $\left|A_{i}\right|=(n-1)^{m},\left|A_{i} \cap A_{j}\right|=(n-2)^{m}, i<j$, etc. The number of surjective functions is $n^{m}-\left|A_{1} \cup \ldots \cup A_{n}\right|$ which by the exclusion-inclusion formula gives the answer

$$
n^{m}-n(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\ldots+(-1)^{n-1} n
$$

4. Using the explicit formula for the Stirling number

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} j^{n}
$$

we get (notice that the sums can be swapped because the series converges absolutely)

$$
\begin{aligned}
\sum_{n=k}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!} & =\sum_{n=k}^{\infty} \sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j}(-1)^{k-j} j^{n} \frac{x^{n}}{n!} \\
& =\sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j}(-1)^{k-j}\left(\sum_{n=k}^{\infty} \frac{(j x)^{n}}{n!}\right) .
\end{aligned}
$$

Notice that $\sum_{n=k}^{\infty} \frac{(j x)^{n}}{n!}=e^{j x}-\sum_{n=0}^{k-1} \frac{(j x)^{n}}{n!}$. Therefore,

$$
\begin{aligned}
\sum_{n=k}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!} & =\sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j}(-1)^{k-j}\left(e^{j x}-\sum_{n=0}^{k-1} \frac{(j x)^{n}}{n!}\right) \\
& =\sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j}(-1)^{k-j} e^{j x}-\sum_{n=0}^{k-1} \frac{1}{k!}(-1)^{k} \frac{x^{n}}{n!} \sum_{j=0}^{k}\binom{k}{j}(-j)^{n} \\
& =\frac{1}{k!}\left(e^{x}-1\right)^{k},
\end{aligned}
$$

where in the last equality we used the orthogonality of the binomial coefficients $\binom{k}{j}$ to the sequence $\left((-j)^{n}\right)_{j=0, \ldots, k}$ for $n \leq k-1$.
5. Clearly, $\mathfrak{u}_{1}=1$ and $\mathfrak{u}_{2}=1$ (we assume we start at the first step). We also have $u_{n}=u_{n-1}+u_{n-2}$ because if the first movement is by 1 step, then we still have to climb the remaining $n-1$ steps. If the first movement is by 2 steps, then we still have to climb the remaining $n-2$ steps. Therefore the u_{n} are the Fibonacci numbers.
6. The number D_{n} is in fact the number of zigzag paths in the plane going from $(0,0)$ to ($2 n, 0$) and staying nonnegative (see the picture).

For $k=2,4, \ldots, 2 n$ consider the paths which hit the $0 x$ axis for the first time at k. When $k=2$ there are D_{n-1} such paths, when $k=4$ there are $D_{1} D_{n-2}$ such paths, when $k=6$ there are $D_{2} D_{n-3}$ such paths, and so on, when $k=2 n$ there are D_{n-1} such paths. Therefore

$$
D_{n}=D_{n-1}+D_{1} D_{n-2}+\ldots+D_{n-2} D_{1}+D_{n-1}
$$

Since $D_{1}=1, D_{n}$ is the Catalan number, hence $D_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
7. We proceed by induction on the number of vertices of T. If T is a single vertex, then the statement is clear. Suppose T has more than 1 vertex, choose its leaf, say x, connected to, say y and consider the tree $T \backslash\{x\}$. If for some i,
T_{i} is the single vertex x, then since T_{i} shares a vertex with every other T_{j}, all the subtrees have x as a common vertex. Now consider the other case when $T_{i} \backslash\{x\} \neq \varnothing$ for every i. The subtrees $T_{i} \backslash\{x\}$ of the tree $T \backslash\{x\}$ also satisfy the property that every two of them share a vertex (If T_{i} and T_{j} share x, they also share y, so do $T_{i} \backslash\{x\}, T_{j} \backslash\{x\}$). By induction, they all share a vertex, so the T_{i} as well.
8. If there is such a tree, then the formula follows from the hand shaking lemma as T has $n-1$ edges.

The other implication will be shown inductively on n. The case $n=1$ is trivial. Suppose $d_{1}+\ldots+d_{n}=2 n-2$. Then $d_{1}=1$ (otherwise $d_{1}+\ldots+d_{n} \geq 2 n$) and $d_{n} \leq n-1$ (otherwise $d_{1}+\ldots+d_{n-1}+d_{n} \geq n-1+n=2 n-1$). So

$$
\mathrm{d}_{2}+\ldots+\left(\mathrm{d}_{n}-1\right)=2 n-4
$$

and applying the inductive assumption to $d_{1}, \ldots, d_{n}-1$ we get a tree on $n-1$ vertices with degrees $d_{1}, \ldots, d_{n}-1$. Add a leaf to it at the vertex with degree $d_{n}-1$.
9. Suppose the colours are b, r, y (blue, red, yellow). If the vertices of a face are coloured with three different colours, then the number of edges at this face of type $\{b, r\}$ equals 1 . If not, then this number equals 0 or 2 . Double-count the number of pairs (a face f, an edge of type $\{b, r\}$ in f). On one hand, it is even because each edge belongs to two faces. On the other hand, it equals

$$
\begin{aligned}
& \sum_{f \text {-face }} \mid\{\text { edges }\{b, r\} \text { on the boundary of } f\} \mid \\
& \quad=\underbrace{(1+1+\ldots+1)}_{\text {faces with all colours }}+(0+0+\ldots+0)+(2+2+\ldots+2),
\end{aligned}
$$

hence the number of faces with all 3 colours is even.
10. Suppose that the number of edges is e and the number of faces is f. Euler's formula gives $n+f=e+2$. Let e^{\prime} be the number of edges which are on the boundary between exactly two faces. If $e^{\prime}=0$, then our graph is a tree, hence $e=n-1 \leq 2 n-4$ as $n \geq 3$. If $e^{\prime}>0$, we can double-count
$2 e \geq 2 e^{\prime}+\left(e-e^{\prime}\right) \geq \mid\{(\gamma, F), \gamma$ is an edge on the boundary of a face $F\} \mid$

$$
\geq 4 f=4(e+2-n)
$$

SO

$$
e \leq 2(n-2)
$$

11. Let n_{k} be the largest n such that there is a colouring of K_{n} without a monochromatic triangle. We want to show that $n_{k} \geq 2^{k}$. Obviously, $n_{1}=2$. Now we show inductively on k that $n_{k} \geq 2 n_{k-1}, k \geq 2$. We take two copies G and G^{\prime} of $\mathrm{K}_{\mathrm{n}_{\mathrm{k}-1}}$, colour each one with $\mathrm{k}-1$ colours so that none contains a monochromatic triangles. Now we build $\mathrm{K}_{2 n_{k-1}}$ by adding all possible edges across G , G^{\prime}, that is we add the edges $\left\{v, \nu^{\prime}\right\}$ for every $v \in \mathrm{~V}(\mathrm{G}), v \in \mathrm{~V}\left(\mathrm{G}^{\prime}\right)$. We colour these edges with the $\mathrm{k}^{\text {th }}$ colour obtaining a $\mathrm{K}_{2 n_{k-1}}$ which is k -coloured without a monochromatic triangle. Therefore, $n_{k} \geq 2 n_{k-1}$.

References

T I. Tomescu, Problems in combinatorics and graph theory. Translated from the Romanian by R. A. Melter. A Wiley-Interscience Publication. John Wiley \& Sons, Ltd., Chichester, 1985.

