## Problems

1. Let $(X,\|\cdot\|)$ be a normed vector space. Prove that if $\|x+y\|=\|x\|+\|y\|$ for some $x, y \in X$, then for every nonnegative real numbers $\alpha, \beta$ we have $\|\alpha x+\beta y\|=\alpha\|x\|+\beta\|y\|$.
2. Let $f$ and $f_{1}, f_{2}, \ldots, f_{n}$ be linear functionals defined on the same vector space. Prove that

$$
\bigcap_{j=1}^{n} \operatorname{ker} f_{j} \subset \operatorname{ker} f
$$

if and only if $f$ is a linear combination of $f_{1}, \ldots, f_{n}$.
3. Let $Y$ be a closed subspace of a normed vector space $X$. Prove that if $Y$ and $X / Y$ are separable, then so is $X$.
4. Is the quotient space $\ell_{\infty} / \mathrm{c}_{0}$ separable?
5. Let $Y$ be a closed subspace of a normed vector space $X$. Prove that if $Y$ and $X / Y$ are complete, then so is $X$.
6. Suppose $X, Y$ are closed subspaces of a normed vector space. Need $X+Y$ be closed?
7. Let $1 \leq p<q$. Show that the set

$$
A=\left\{f \in L_{p}[0,1], \int_{0}^{1}|f|^{q} \leq 1\right\}
$$

is closed with empty interior in $\left(\mathrm{L}_{\mathrm{p}}[0,1],\|\cdot\|_{p}\right)$. Conclude that $\mathrm{L}_{\mathrm{q}}[0,1]$ is a countable union of nowhere dense sets in ( $\mathrm{L}_{\mathrm{p}}[0,1],\|\cdot\|_{\mathrm{p}}$ ). Why does this not contradict Baire's theorem and $\mathrm{L}_{\mathrm{p}}$ spaces being Banach?
8. Let $f$ be a nonzero functional on a normed vector space. Prove that the following conditions are equivalent
$f$ is continuous,
ker $f$ is closed,
ker $f$ is nowhere dense.
9. Given a vector space $X$, is it always possible to define a norm $\|\cdot\|$ on $X$ such that $(X,\|\cdot\|)$ becomes a Banach space? (In other words, is every vector space Banach-normable?)
10. Let $X$ be a Banach space in which every subspace is closed. Show that $X$ is finite dimensional.
11. Give an example of a vector space $X$ for which there are two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ such that $(X,\|\cdot\|)$ is separable but $\left(X,\|\cdot\|^{\prime}\right)$ is not.
12. Define the Rademacher functions

$$
r_{n}(t)=\operatorname{sgn}\left(\sin \left(2^{n} \pi t\right)\right), \quad n=0,1,2, \ldots
$$

Show that $\left\{r_{n}, n \geq 0\right\}$ is an incomplete orthogonal system in $L_{2}[0,1]$.
13. Show that every orthogonal subset of a separable Hilbert space is countable.
14. Let $C$ be a nonempty closed and convex subset of a Hilbert space $H$. We know that for every $x \in H$ there is a unique best approximation $x^{*}$ of $x$ in $C$, that is $\left\|x^{*}-x\right\|=\inf _{a \in C}\|a-x\|$. Show that for every $x, y \in H$ we have

$$
\left\|x^{*}-y^{*}\right\| \leq\|x-y\| .
$$

15. Let $P, Q$ be orthogonal projections in Hilbert space. Prove that $\|P-Q\| \leq 1$.
16. Let $T$ be an $n \times n$ matrix with row vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ and column vectors $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$,

$$
\mathrm{T}=\left[\begin{array}{ccc}
- & a_{1} & - \\
- & \mathrm{a}_{2} & - \\
& \ldots & \\
- & \mathrm{a}_{\mathrm{n}} & -
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathrm{b}_{1} & \mathrm{~b}_{2} & \ldots & \mathrm{~b}_{\mathrm{n}} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Show that $T$, as a linear operator acting on certain $\ell_{\mathrm{p}}$ spaces, has the following norms

$$
\begin{aligned}
\|T\|_{\ell_{p}^{n} \rightarrow \ell_{\infty}^{n}} & =\max _{j \leq n}\left\|a_{j}\right\|_{q}, \\
\|T\|_{\ell_{1}^{n} \rightarrow \ell_{p}^{n}} & =\max _{j \leq n}\left\|b_{j}\right\|_{p}
\end{aligned}
$$

where $p \in[1, \infty]$ and $1 / p+1 / q=1$.
17. Find all $\alpha \in \mathbb{R}$ for which the linear map $T: \ell_{3} \longrightarrow \ell_{1}, T x=\left(n^{\alpha} x_{n}\right)_{n \geq 1}$ is bounded.
18. Give an example of a bounded linear map $S: c_{0} \longrightarrow c_{0}$ for which there is no linear extension $\tilde{S}: c \longrightarrow c_{0}$ preserving the norm, that is $\tilde{S} \mid c_{0}=S$ and $\|\tilde{S}\|=\|S\|$.

19* Let $(X,\|\cdot\|)$ be an $n$ dimensional normed vector space. Show that there are linearly independent unit vectors $x_{1}, \ldots, x_{n} \in X$ and functionals $\phi_{1}, \ldots, \phi_{n} \in$ $X^{*}$ of norm one satisfying $\phi_{j}\left(x_{i}\right)=\delta_{i j}$ for every $\mathfrak{i}, j \leq n$. (Auerbach's lemma.)
20. Let $(X,\|\cdot\|)$ be an $n$ dimensional normed vector space. Show that there is a basis $x_{1}, \ldots, x_{n}$ of $X$ such that for every scalars $\lambda_{1}, \ldots, \lambda_{n}$ we have

$$
\max _{j \leq n}\left|\lambda_{j}\right| \leq\left\|\sum_{j=1}^{n} \lambda_{n} x_{n}\right\| \leq \sum_{j=1}^{n}\left|\lambda_{j}\right| .
$$

21. Let $(X,\|\cdot\|)$ be a normed vector space which is reflexive. Prove that for every bounded functional $\phi \in X^{*}$ there is a unit vector $x \in X$ such that $\phi(x)=\|\phi\|$.
22. Prove that the spaces: $c_{0}, c, \ell_{1}, C[0,1], L_{1}[0,1]$ are not reflexive.
23. Let $X$ be a normed vector space. Show that every weakly convergent sequence in $X$ is bounded.
24. Let $X$ be a Banach space. Show that every weakly* convergent sequence in $X^{*}$ is bounded.
25. Let $\left\{v_{n}, n \geq 1\right\}$ be an orthogonal bounded set in a Hilbert space. Show that the sequence $\left(v_{n}\right)$ converges weakly to 0 .
26. Let $T: X \longrightarrow Y$ be a linear map between Banach spaces $X, Y$. Show that $T$ is bounded if and only if for every weakly convergent sequence $\left(x_{n}\right)$ in $X$, the sequence ( $T x_{n}$ ) is weakly convergent in Y .
27. Let $p \in(1, \infty)$. Show that a sequence ( $x_{n}$ ) is weakly convergent to $x$ in $\ell_{p}$ if and only if it is bounded and each coordinate of $x_{n}$ converges to the corresponding coordinate of $x$.

28! Show that if a sequence $\left(x_{n}\right)$ converges weakly in $\ell_{1}$ to $x$ then $\left\|x_{n}-x\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow} 0$. (Schur's property.)
29. Let $X$ be a normed vector space. Show that if the dual space $X^{*}$ is separable, then so is $X$.

30* Let $(X, \mathcal{F}, \mu)$ and $(Y, \mathcal{G}, v)$ be measurable spaces. Let $p \in[1, \infty)$ and suppose $\mathrm{f}: \mathrm{X} \times \mathrm{Y} \longrightarrow \mathbb{R}$ is $\mathcal{F} \otimes \mathcal{G}$ measurable. Then

$$
\left\|y \mapsto \int_{X} f(x, y) d \mu(x)\right\|_{L_{p}(v)} \leq \int_{X}\|y \mapsto f(x, y)\|_{L_{p}(v)} d \mu(x)
$$

(Minkowski's integral inequality).

## Solutions

1. Suppose that $\alpha \geq \beta$. By the triangle inequality,

$$
\|\alpha x+\beta y\|=\|\alpha(x+y)-(\alpha-\beta) y\| \geq \alpha\|x+y\|-(\alpha-\beta)\|y\|
$$

which combined with the assumption gives

$$
\|\alpha x+\beta y\| \geq \alpha\|x\|+\beta\|y\| .
$$

By the triangle inequality, the opposite inequality holds as well.
2. If $f=\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{n}$ for some scalars $\alpha_{i}$ then plainly

$$
\bigcap_{j=1}^{n} \operatorname{ker} f_{j} \subset \operatorname{ker} f .
$$

We show the converse inductively on $n$. Let $n=1$. If $f_{1}=0$, then by ker $f_{1} \subset \operatorname{ker} f$ also $f=0$, so there is nothing to prove. Take then a nonzero vector $v$ such that $\mathrm{f}_{1}(v) \neq 0$. For every vector $x$ we have

$$
x-\frac{f_{1}(x)}{f_{1}(v)} v \in \operatorname{ker} f_{1} \subset \operatorname{ker} f
$$

hence

$$
f\left(x-\frac{f_{1}(x)}{f_{1}(v)} v\right)=0
$$

which yields $f=\frac{f(v)}{f_{1}(v)} f_{1}$. Suppose we have $n+1$ functionals $f_{1}, \ldots, f_{n+1}$ and $\bigcap_{j=1}^{n+1}$ ker $f_{j} \subset \operatorname{ker} f$. Consider the subspace $Z=\operatorname{ker} f_{n+1}$ and the restricted functionals $g_{i}=f_{i}|Z, i \leq n, g=f| Z$ on $Z$. By the inductive assumption, $g=\alpha_{1} g_{1}+\ldots+\alpha_{n} g_{n}$ (on $Z$ ) for some scalars $\alpha_{i}$. This particularly implies that

$$
\operatorname{ker} f_{n+1}=Z \subset \operatorname{ker}\left(f-\alpha_{1} f_{1}-\ldots-\alpha_{n} f_{n}\right)
$$

so by the case $n=1$ we get

$$
f-\alpha_{1} f_{1}-\ldots-\alpha_{n} f_{n}=\alpha_{n+1} f_{n+1}
$$

for some scalar $\alpha_{n+1}$, which completes the proof.
3. Let $\left\{y_{n}, n \geq 1\right\}$ be a dense subset in $Y$ and let $\left\{x_{n}+Y, n \geq 1\right\}$ be a dense subset in $X / Y$. For any $\epsilon>0$ and $x \in X$ we can find $n$ such that

$$
\left\|\left(x-x_{n}\right)+Y\right\|=\left\|(x+Y)-\left(x_{n}+Y\right)\right\|<\epsilon .
$$

By the definition of a quotient norm and the fact that the $y_{n}$ are dense in $Y$ we can find $m$ such that

$$
\left\|x-x_{n}-y_{m}\right\|<2 \epsilon
$$

This shows that the set $\left\{x_{n}+y_{m}, n, m \geq 1\right\}$ is dense in $X$.
4. We know that the space $c_{0}$ is separable, whereas $\ell_{\infty}$ is not. If the quotient space $\ell_{\infty} / c_{0}$ was separable, then, by Problem $3, \ell_{\infty}$ would be separable.
5. Suppose $\left(x_{n}\right)$ is a Cauchy sequence in $X$. Then clearly $\left(x_{n}+Y\right)$ is a Cauchy sequence in $X / Y$. By the assumption it converges, say to $x+Y$,

$$
\left\|\left(x-x_{n}\right)+Y\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

This means that there are $y_{n} \in Y$ such that

$$
\left\|x-x_{n}-y_{n}\right\|<\left\|\left(x-x_{n}\right)+Y\right\|+1 / n \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

In particular, $x_{n}+y_{n}$ converges to $x$. It remains to show that $y_{n}$ converges as well. We have

$$
\begin{aligned}
\left\|y_{n}-y_{m}\right\| & \leq\left\|y_{n}+x_{n}-x\right\|+\left\|x-x_{m}-y_{m}\right\|+\left\|x_{m}-x_{n}\right\| \\
& \leq\left\|\left(x-x_{n}\right)+Y\right\|+\left\|\left(x-x_{m}\right)+Y\right\|+1 / n+1 / m+\left\|x_{m}-x_{n}\right\|
\end{aligned}
$$

which shows that $\left(y_{n}\right)$ is a Cauchy sequence in $Y$.
6. The subspace $X+Y$ need not be closed. Consider for instance

$$
\begin{aligned}
& X=\operatorname{span}\left\{e_{2 n}, n \geq 1\right\}, \\
& Y=\operatorname{span}\left\{e_{2 n}+\frac{1}{\sqrt{n}} e_{2 n+1}, n \geq 1\right\},
\end{aligned}
$$

in $\ell_{2}$. These are closed subspaces (why?). Moreover, $\operatorname{span}\left\{e_{n}, n \geq 1\right\} \subset X+Y$. Therefore, if $X+Y$ was closed, we would have $X+Y=\ell_{2}$. However,

$$
\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n+1} \in \ell_{2}=X+Y
$$

would imply that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} e_{2 n} \in X
$$

but this vector does not belong to $\ell_{2}$. This contradiction shows that $X+Y$ is not closed.
7. Suppose that $f_{n} \in A$ and $f_{n} \rightarrow f$ in $L_{p}[0,1]$. Convergence in $L_{p}$ implies convergence in law, hence there is a subsequence $n_{k}$ such that $f_{n_{k}}$ converges to $f$ a.s. By Fatou's lemma we get

$$
\int_{0}^{1}|f|^{q}=\int_{0}^{1} \varliminf_{k \rightarrow \infty}\left|f_{n_{k}}\right|^{q} \leq \lim _{k \rightarrow \infty} \int_{0}^{1}\left|f_{n_{k}}\right|^{q} \leq 1,
$$

so $f \in A$ which shows that $A$ is closed.
Suppose the interior of $A$ in $L_{p}$ is not empty, that is $A$ contains a ball. Since $p<q, L_{p}[0,1] \subsetneq L_{q}[0,1]$, such a ball contains functions with infinite $L_{q}$ norms. This contradicts the fact that $A$ is bounded in the $L_{q}$ norm.

Thus $A$ is nowhere dense and so is any its dilation $n A$. We have

$$
\mathrm{L}_{\mathrm{q}}[0,1]=\bigcup_{n \geq 1} n A
$$

which shows that $L_{q}[0,1]$ is a countable union of nowhere dense sets in $L_{p}[0,1]$. This does not contradict that ( $\mathrm{L}_{\mathrm{q}}[0,1],\|\cdot\|_{q}$ ) is a Banach space because the sets $n A$ are nowhere dense in the metric given by the norm $\|\cdot\|_{p}$, not $\|\cdot\|_{q}$.
8. $(\boldsymbol{\phi}) \Longrightarrow(\boldsymbol{\phi})$ Obvious.
$(\boldsymbol{\wedge}) \Longrightarrow(\diamond)$ The only subspace with nonempty interior is the whole space; since $f$ is nonzero, its kernel is a proper subspace, so it has empty interior and as being closed, it is nowhere dense.
$(\diamond) \Longrightarrow(\boldsymbol{\phi})$ Suppose f is not bounded. Then there are unit vectors $\mathrm{x}_{\mathrm{n}}$ for which $\left|f\left(x_{n}\right)\right| \geq n$. For any vector $x$ and $n$ we have

$$
y_{n}=x-\frac{f(x)}{f\left(x_{n}\right)} x_{n} \in \operatorname{ker} f
$$

Moreover,

$$
\left\|y_{n}-x\right\| \leq \frac{|f(x)|}{n}
$$

so $y_{n} \rightarrow x$. Therefore $x \in \operatorname{cl}$ ker $f$. Since $x$ is arbitrary, cl ker $f$ is the whole space, but this contradicts its interior being empty.

In the next several questions we will use the following nice consequence of Baire's theorem proved in class:

If a Banach space is infinite dimensional, then its Hamel basis is uncountable.

Recall also the following fact concerning separability:
If a normed vector space contains an uncoutable set of points any two of which are distance 1 apart, then it is not separable.
9. Consider the vector space $c_{00}$ of all sequences eventually zero. For instance the set $\left\{e_{n}, n \geq 1\right\}$ is a Hamel basis for this space, which is countable. In view of $(\star)$, the space $c_{00}$ is not Banach-normable.
10. Suppose $\operatorname{dim} X=\infty$. Then there are countably many linearly independent vectors $x_{1}, x_{2}, \ldots$. Consider the subspace $Y=\operatorname{span}\left\{x_{n}, n \geq 1\right\}$. As a closed subspace of a Banach space, Y is a Banach space, but this contradicts ( $\star$ ).
11. Take $X=\ell_{2}$ and set $\|\cdot\|$ to be the standard $\ell_{2}$ norm. Fix a Hamel basis $\left\{b_{t}, t \in T\right\}$ in $\ell_{2}$ and define for every vector $x=\sum_{t \in T} \beta_{t} b_{t}$ (almost all $\beta_{t}$ are zero)

$$
\|x\|^{\prime}=\sum_{\mathrm{t} \in \mathrm{~T}}\left|\beta_{\mathrm{t}}\right| .
$$

It is readily checked that this defines a norm on $\ell_{2}$. For every pair of distinct $s, t \in T$ the vectors $b_{s}, b_{t}$ are distance 2 -apart, $\left\|b_{s}-b_{t}\right\|^{\prime}=2$, and $T$ is uncountable. By ( $* *$ ) the space $\left(\ell_{2},\|\cdot\|^{\prime}\right)$ is not separable.
12. Checking that $\left\langle r_{k}, r_{l}\right\rangle=0$ for $k \neq l$ is straightforward. The system $\left\{r_{n}\right\}$ is incomplete as it is readily verified that $\left\langle r_{k}, \boldsymbol{1}_{[0,1 / 4]}-1_{[1 / 4,3 / 4]}+1_{[3 / 4,1]}\right\rangle=0$ for every k.
13. Any orthogonal set can be made orthonormal. If $u, v$ are orthogonal unit vectors in a Hilbert space, then $\|u-v\|^{2}=2$. If an orthonormal set was uncountable, we would have uncountably many pairs of points which are distance $\sqrt{2}$-apart, which would contradict separability by ( $\star \star$ ).
14. Fix $x \in H$. First we show that for every $a \in C$ we have

$$
\mathfrak{R e}\left\langle x-x^{*}, a-x^{*}\right\rangle \leq 0 .
$$



Fix $a \in C$ and set $a_{\lambda}=(1-\lambda) x^{*}+\lambda a, \lambda \in[0,1]$. By convexity, $a_{\lambda} \in C$. In view of the fact that $x^{*}$ is the best approximation of $x$ in $C$ we have

$$
\begin{aligned}
\left\|x-x^{*}\right\|^{2} \leq\left\|x-a_{\lambda}\right\|^{2} & =\left\|\left(x-x^{*}\right)+\left(x^{*}-a_{\lambda}\right)\right\|^{2} \\
& =\left\|x-x^{*}\right\|^{2}+2 \mathfrak{R e}\left\langle x-x^{*}, x^{*}-a_{\lambda}\right\rangle+\left\|x^{*}-a_{\lambda}\right\|^{2}
\end{aligned}
$$

hence

$$
-2 \mathfrak{R e}\left\langle x-x^{*}, x^{*}-\mathfrak{a}_{\lambda}\right\rangle \leq\left\|x^{*}-a_{\lambda}\right\|^{2} .
$$

Note that $x^{*}-a_{\lambda}=\lambda(x-a)$. Plugging this back, dividing by $\lambda$ and then letting $\lambda \rightarrow 0$ yield the result.

Fix $x, y \in H$. Using what we just showed gives

$$
\begin{aligned}
& \mathfrak{R e}\left\langle x-x^{*}, y^{*}-x^{*}\right\rangle \leq 0 \\
& \mathfrak{R e}\left\langle y-y^{*}, x^{*}-y^{*}\right\rangle \leq 0
\end{aligned}
$$

Adding these we obtain

$$
0 \geq \mathfrak{R e}\left\langle y-y^{*}-x+x^{*}, x^{*}-y^{*}\right\rangle=\left\|x^{*}-y^{*}\right\|^{2}+\mathfrak{R e}\left\langle y-x, x^{*}-y^{*}\right\rangle
$$

To finish, move the inner product over and apply the Cauchy-Schwarz inequality,

$$
\left\|x^{*}-y^{*}\right\|^{2} \leq \mathfrak{R e}\left\langle x-y, x^{*}-y^{*}\right\rangle \leq\|x-y\| \cdot\left\|x^{*}-y^{*}\right\| .
$$

15. Observe that for every vector $x$ by orthogonality of $x-P x$ and $P x$ we have

$$
\|x-2 P x\|^{2}=\|(x-P x)-P x\|^{2}=\|x-P x\|^{2}+\|P x\|^{2}=\|x\|^{2} .
$$

The same holds for Q as well. Therefore

$$
2\|\mathrm{P} x-\mathrm{Q} x\| \leq\|2 \mathrm{P} x-x\|+\|x-2 \mathrm{Q} x\|=2\|x\|
$$

16. By $x \cdot y=\sum_{j \leq n} x_{j} y_{j}$ we denote the standard inner product on $\mathbb{R}^{n}$. Fix a vector $x$ in $\mathbb{R}^{n}$ with $\|x\|_{p}=1$. Then by Hölder's inequality

$$
\|T x\|_{\infty}=\max _{j \leq n}\left|a_{j} \cdot x\right| \leq \max _{j \leq n}\left\|a_{j}\right\|_{q} \cdot\|x\|_{p}=\max _{j \leq n}\left\|a_{j}\right\|_{q}
$$

and if $\left\|a_{j_{0}}\right\|_{q}=\max _{j \leq n}\left\|a_{j}\right\|_{q}$, in order to to get equality we choose $x$ for which $\left|a_{j_{0}} \cdot x\right|=\left\|a_{j_{0}}\right\|_{q}$. This establishes that

$$
\|T\|_{\ell_{p}^{n} \rightarrow \ell_{\infty}^{n}}=\max _{j \leq n}\left\|a_{j}\right\|_{q} .
$$

Now fix a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{R}^{n}$ with $\|x\|_{1}=1$. We get

$$
\|T x\|_{p}=\left\|\sum_{j \leq n} x_{j} b_{j}\right\|_{p} \leq \sum_{j \leq n}\left|x_{j}\right| \cdot\left\|b_{j}\right\|_{p} \leq \max _{j \leq n}\left\|b_{j}\right\|_{p}
$$

If $\left\|b_{j_{0}}\right\|_{p}=\max _{j \leq n}\left\|b_{j}\right\|_{p}$, then to get equality we choose simply $x=e_{j_{0}}$. This establishes that

$$
\|T\|_{\ell_{1}^{n} \rightarrow \ell_{p}^{n}}=\max _{j \leq n}\left\|b_{j}\right\|_{p}
$$

17. Using Hölder's inequality,

$$
\|T x\|_{1}=\sum_{n=1}^{\infty}\left|n^{\alpha} x_{n}\right| \leq\left(\sum_{n=1}^{\infty} n^{\frac{3}{2} \alpha}\right)^{2 / 3}\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{\beta}\right)^{1 / 3}=\left(\sum_{n=1}^{\infty} n^{\frac{3}{2} \alpha}\right)^{2 / 3} \cdot\|x\|_{3},
$$

so if $\alpha<-2 / 3$, the series $\sum n^{3 \alpha / 2}$ converges and $T$ is bounded.
Suppose now that $T$ is bounded. Then for every $x \in \ell_{3}$ the series $\sum n^{\alpha} x_{n}$ is absolutely convergent and bounded by $\|\mathrm{T}\| \cdot\|\mathrm{x}\|_{3}$. This means that

$$
\left(x \mapsto \sum_{n=1}^{\infty} n^{\alpha} x_{n}\right) \in \ell_{3}^{*}
$$

so by the duality $\ell_{3}^{*} \simeq \ell_{3 / 2}$ we get $\left(n^{\alpha}\right) \in \ell_{3 / 2}$ which holds if and only if $\alpha<-2 / 3$.
18. Take simply $S=$ Id: $c_{0} \rightarrow c_{0}$ and suppose that it can be extended to $\tilde{S}: c \rightarrow c_{0}$ without increasing the norm. Denote the constant sequence ( $1,1, \ldots$ ) by $e$. Let $y=\tilde{S} e$. We have $\left\|e-2 e_{n}\right\|_{\infty}=1$ and $\tilde{S} e_{n}=e_{n}$, so

$$
\left|y_{n}-2\right| \leq\left\|y-2 e_{n}\right\|_{\infty}=\left\|\tilde{S} e-2 \tilde{S} e_{n}\right\|_{\infty} \leq\|\tilde{S}\| \cdot\left\|e-2 e_{n}\right\|_{\infty}=1
$$

Since $y$ is in $c_{0}$ (as the image of $e$ under $\tilde{S}$ ), the left-hand-side converges to 2 , which gives a contradiction.
19. Take any basis in $X$ of unit vectors $\left(y_{j}\right)$ and its dual $\left(y_{j}^{*}\right)$, meaning $y_{j}^{*}\left(y_{i}\right)=\delta_{i j}$ for all $i, j$. The problem is that the $y_{j}^{*}$ may not have norm one. To fix it we define the function

$$
\mathrm{V}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{det}\left[y_{j}^{*}\left(z_{i}\right)\right]_{i, j=1, \ldots, n}
$$

on $X \times \ldots \times X$. It is continuous, hence it attains its supremum on the compact set $S_{X} \times \ldots \times S_{X}$ at, say $\left(x_{1}, \ldots, x_{n}\right)$ (the set $S_{X}$ denotes the unit sphere in $X$ ). For a fixed index $j$ let us define the functional

$$
\phi_{j}(x)=\frac{V\left(x_{1}, \ldots, x_{j-1}, x, x_{j+1}, \ldots, x_{n}\right)}{V\left(x_{1}, \ldots, x_{j}\right)}, \quad x \in X
$$

Then $\phi_{\mathfrak{j}}\left(x_{i}\right)=0$, if $\mathfrak{i} \neq \mathfrak{j}$, as the determinant of a matrix with two identical columns equals 0 . Clearly $\phi_{j}\left(x_{j}\right)=1$. Moreover, since $V$ on the set $S_{X} \times \ldots \times S_{X}$ attains its maximum at $\left(x_{1}, \ldots, x_{n}\right)$, we have $\sup _{x \in S_{x}} \phi_{j}(x)=1$, so $\|\phi\|=1$.
20. Let $x_{1}, \ldots, x_{n}$ be a basis in $X$ provided by Auerbach's lemma and let $\phi_{1}, \ldots, \phi_{n}$ be the corresponding functionals of norm one such that $\phi_{j}\left(x_{i}\right)=\delta_{i j}$ for all $i, j$ (see Question 19). Since the vectors $x_{j}$ are unit the right inequality follows simply by the triangle inequality. Notice that

$$
\left|\lambda_{j}\right|=\left|\phi_{j}\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)\right| \leq\left\|\phi_{j}\right\| \cdot\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| .
$$

This shows the left inequality as $\left\|\phi_{j}\right\|=1$.
21. Application of the Hahn-Banach theorem to the vector $\phi \in X^{*}$ yields a unit functional $p \in X^{* *}$ on $X^{*}$ for which $p(\phi)=\|\phi\|$. By reflexivity, the canonical isometric embedding $X \stackrel{\hookrightarrow}{\hookrightarrow} X^{* *}$ is onto, hence there is $x \in X$ such that $p=\imath(x)$ and $1=\|p\|=\|x\|$. Then

$$
\|\phi\|=p(\phi)=\imath(x)(\phi)=\phi(x)
$$

so $x$ is the unit vector we want to find.
22. By Question 21, to show that the spaces $c_{0}, c, \ell_{1}, C[0,1], L_{1}[0,1]$ are not reflexive, for each of them it is enough to find a bounded functional $\phi$ which does not attain its norm. It can be readily checked that we can take

- $\phi(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n}$ on $c_{0}$,
- $\phi(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n}$ on $c$,
- $\phi(x)=\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right) x_{n}$ on $\ell_{1}$,
- $\phi(f)=\int_{0}^{1 / 2} f-\int_{1 / 2}^{1} f$ on $C[0,1]$,
- $\phi(f)=\int_{0}^{1} x f(x) d x$ on $L_{1}[0,1]$.

23. Suppose $x_{n} \rightharpoonup x$ (weakly in $X$ ). The sequence $x_{n}$ is bounded if and only if its image under the canonical embedding $\iota$ of $X$ into $X^{* *}$ is bounded. Let $x_{n}^{* *}=\mathfrak{l}\left(x_{n}\right)$. For a fixed $\phi \in X^{*}$ we have

$$
\sup _{n}\left|x_{n}^{* *}(\phi)\right|=\sup _{n}\left|\phi\left(x_{n}\right)\right|<\infty
$$

as the sequence $\phi\left(x_{n}\right)$ is convergent. Therefore by the Banach-Steinhaus theorem, the family of functionals $X_{n}^{* *}$ (acting on $X^{*}$ which is a Banach space) is norm-bounded, that is

$$
\sup _{n}\left\|x_{n}\right\|=\sup _{n}\left\|x_{n}^{* *}\right\|<\infty
$$

24. Follows directly by applying the Banach-Steinhaus theorem as in Question 23.
25. Let $u_{n}=v_{n} /\left\|v_{n}\right\|$ be the normalised sequence and set $M=\sup _{n}\left\|v_{n}\right\|^{2}$. Fix a vector $v$. By Bessel's inequality

$$
\sum_{n=1}^{\infty}\left|\left\langle v, v_{n}\right\rangle\right|^{2}=\sum_{n=1}^{\infty}\left|\left\langle v, u_{n}\right\rangle\right|^{2} \cdot\left\|v_{n}\right\|^{2} \leq M \sum_{n=1}^{\infty}\left|\left\langle v, u_{n}\right\rangle\right|^{2} \leq M\|v\|^{2}
$$

so the series $\sum\left|\left\langle v, v_{n}\right\rangle\right|^{2}$ converges and particularly $\left\langle v, v_{n}\right\rangle \rightarrow 0$. This shows that the sequence $\left(v_{n}\right)$ converges weakly to 0 .
26. If T is bounded, then clearly every weakly convergent sequence gets mapped to a weakly convergent sequence. Conversely, suppose a sequence ( $x_{n}$ ) converges (in norm) to 0 . We want to show that $T x_{n} \rightarrow 0$ (continuity at 0 implies by linearity the boundedness of $T$ ). Since $x_{n} \rightarrow 0$, also $x_{n} \rightharpoonup 0$, so $A x_{n}$ converges weakly. By Question 23, the sequence ( $A x_{n}$ ) is bounded. Fix $\epsilon>0$. We want to show that eventually $\left\|A x_{n}\right\| \leq \epsilon$. If $\left\|A x_{n}\right\|>\epsilon$ for infinitely many $n$, then considering the sequence $y_{n}=x_{n} / \sqrt{\left\|x_{n}\right\|}$ which converges to 0 as $\left\|y_{n}\right\|=\sqrt{\left\|x_{n}\right\|}$, we get similarly that the sequence $A y_{n}$ is bounded, but for infinitely many $n,\left\|A y_{n}\right\|>\frac{\epsilon}{\sqrt{\left\|x_{n}\right\|}} \rightarrow \infty$. This contradiction finishes the proof.
27. Let $e_{n}$ be the standard unit vectors in $\ell_{p}$ and by $e_{n}^{*} \in \ell_{\mathrm{p}}^{*}$ we denote their duals, $e_{n}^{*}(x)=x_{n}$. Since $\ell_{\mathrm{p}}^{*} \simeq \ell_{\mathrm{q}}$ and $\mathrm{q}=\mathrm{p} /(\mathrm{p}-1) \in(1, \infty)$, the sequence $\left(e_{n}^{*}\right)$ is dense in $\ell_{\mathrm{p}}^{*}$.

If a sequence ( $x_{n}$ ) converges weakly in $\ell_{p}$ to $x$, then it is bounded by Question 23 and the convergence of coordinates follows by testing with $e_{n}^{*}$. Conversely, suppose a sequence ( $x_{n}$ ) is bounded by, say a $>0$ in $\ell_{p}$ and for some sequence $x$ we have that for every $n, e_{n}^{*}\left(x_{m}\right) \underset{m \rightarrow \infty}{\longrightarrow} e_{n}^{*}(x)$. Since

$$
\sum_{n=1}^{N}\left|e_{n}^{*}(x)\right|^{p}=\varlimsup_{m \rightarrow \infty} \sum_{n=1}^{N}\left|e_{n}^{*}\left(x_{m}\right)\right|^{p} \leq \varlimsup_{m \rightarrow \infty}\left\|x_{m}\right\|_{p}^{p} \leq a^{p}
$$

the sequence $x$ is in $\ell_{p}$ and $\|x\|_{p} \leq a$. Fix $\phi \in \ell_{p}^{*}$. We want to show that $\phi\left(x_{m}\right) \underset{m \rightarrow \infty}{\longrightarrow} \phi(x)$. Fix $\epsilon>0$. By density, there is a finite linear combination $\psi$ of the $e_{n}^{*}$ such that $\|\phi-\psi\|<\epsilon /(4 a)$. By the assumption, $\psi\left(x_{m}\right) \underset{m \rightarrow \infty}{\longrightarrow} \psi(x)$, so there is $M$ such that $\left|\psi\left(x_{m}\right)-\psi(x)\right|<\epsilon / 2$ for all $m>M$. Then for those
m we obtain

$$
\begin{aligned}
\left|\phi\left(x_{m}\right)-\phi(x)\right| & \leq\left|\psi\left(x_{m}\right)-\psi(x)\right|+|\psi(x)-\phi(x)|+\left|\psi\left(x_{m}\right)-\phi\left(x_{m}\right)\right| \\
& \leq \frac{\epsilon}{2}+\|\psi-\phi\| \cdot\left(\|x\|_{p}+\left\|x_{m}\right\|_{p}\right) \leq \frac{\epsilon}{2}+\frac{\epsilon}{4 a} \cdot 2 a=\epsilon .
\end{aligned}
$$

28. Left for the dedicated student.
29. Let $\left\{\phi_{n}\right\} \subset S_{X^{*}}$ be a countable dense subset in the unit sphere of the dual space. For every $n$ choose a unit vector $x_{n} \in X$ such that $\left|\phi_{n}\left(x_{n}\right)\right|>\frac{1}{2}\left\|\phi_{n}\right\|=\frac{1}{2}$. We want to show that $Y=\operatorname{cl} \operatorname{span}\left\{x_{n}, n \geq 1\right\}$ is $X$. Suppose that $Y \subsetneq X$. Then by the Hahn-Banach theorem there is a functional $\phi$ of norm one such that $\phi \mid Y=0$. Choose $k$ so that $\left\|\phi-\phi_{k}\right\|<1 / 3$. We have

$$
\frac{1}{2}<\left|\phi_{k}\left(x_{k}\right)\right|=\left|\phi_{k}\left(x_{k}\right)-\phi\left(x_{k}\right)\right| \leq\left\|\phi_{k}-\phi\right\| \cdot\left\|x_{k}\right\|<\frac{1}{3}
$$

30. Left for the dedicated student.
