Extra questions, first year maths students, Term 1 2014/2015
Tomasz Tkocz, t (dot) tkocz (at) warwick (dot) ac (dot) uk

Question 1. Suppose you take a friend of yours, go to a bar and order 8 pints of beer. The bartender brings you one 8-pint jug full of beer, and two empty jugs: one 3-pint and one 5 -pint jug. How will you divide the 8 pints in half using the jugs provided?

Question 2. Prove that for every positive integer n we have

$$
\frac{4^{n}}{2 \sqrt{n}} \leq\binom{ 2 n}{n} \leq 4^{n}
$$

Question 3. Prove that for every real number x the following inequality holds

$$
|x+1|+|x+2|+\ldots+|x+2014| \geq 1007^{2}
$$

When does the equality hold?
Question 4. Prove by induction that for every positive reals $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $a_{1} a_{2} \cdot \ldots \cdot a_{n}=1$ we have $a_{1}+a_{2}+\ldots+a_{n} \geq n$.

Question 5. Let a_{1}, \ldots, a_{n} be positive real numbers and let $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ be the same numbers but possibly reordered. Prove that

$$
\frac{a_{1}}{a_{1}^{\prime}}+\ldots+\frac{a_{n}}{a_{n}^{\prime}} \geq n
$$

Question 6. Prove the following inequalities
(a) If a, b, b are positive real numbers, then

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}
$$

(b) If $0<a_{1} \leq a_{2} \leq \ldots \leq a_{n}$, then

$$
\frac{a_{1}}{a_{2}+a_{3}}+\frac{a_{2}}{a_{3}+a_{1}}+\ldots+\frac{a_{n-2}}{a_{n-1}+a_{n}}+\frac{a_{n-1}}{a_{n}+a_{1}}+\frac{a_{n}}{a_{1}+a_{2}} \geq \frac{n}{2} .
$$

(c) If $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrary positive real numbers, then

$$
\frac{a_{1}}{a_{2}+a_{3}}+\frac{a_{2}}{a_{3}+a_{1}}+\ldots+\frac{a_{n-2}}{a_{n-1}+a_{n}}+\frac{a_{n-1}}{a_{n}+a_{1}}+\frac{a_{n}}{a_{1}+a_{2}} \geq \frac{n}{4}
$$

Question 7. Prove that the limit of the sequence $a_{n}=\sin (n)$ when $n \rightarrow \infty$ does not exist.

Question 8. Examine the convergence of the sequence

$$
a_{n}=\sum_{k=1}^{n} \frac{k}{n^{2}+k}=\frac{1}{n^{2}+1}+\frac{2}{n^{2}+2}+\ldots \frac{n}{n^{2}+n}
$$

Question 9. Does the series $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)^{n}$ converge?
Question 10. Given an irrational number α prove that the set $\{\{k \alpha\}: k \in \mathbb{Z}\}$ is a dense subset of the interval $[0,1]$, i.e. prove that for any numbers $0<a<b<1$ there exists an integer k such that $\{k \alpha\} \in(a, b)$.
Remark. The fractional part, denoted by $\{x\}$ for real x, is defined by the formula

$$
\{x\}=x-\lfloor x\rfloor,
$$

where $\lfloor\cdot\rfloor$ denotes the usual floor function.
Question 11. Does there exist a positive integer n such that the number $\sqrt[n]{\sqrt{2}+1}+$ $\sqrt[n]{\sqrt{2}-1}$ is rational?

Question 12. Let φ be Euler's totien function, i.e. for a positive integer n we define $\varphi(\mathfrak{n})$ to be the number of positive integers less than or equal to n that are relatively prime to n. Prove that for any positive integer n

$$
\sum_{d \mid n} \varphi(d)=n
$$

where the sum is over all positive divisors of n.
Question 13. Nonzero integers a, b, c are chosen so that the number $a / b+b / c+c / a$ is an integer. Prove that $a b c$ is the cube of an integer.

Question 14. Prove that the cube of any integer can be written as the difference of two squares.

Question 15. Does there exist a non-abelian group with less than 6 elements?
Question 16. Show that if n is odd, it is not possible for a knight to visit all the squares of an $\mathfrak{n} \times \mathfrak{n}$ chessboard exactly once and return to its starting point.

