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Brownian Motion I

Solutions

Question 1. Let B be a standard linear Brownian motion. Show that for any 0 <

t1 < t2 < . . . < tk the joint distribution of the vector (Bt1, . . . , B(tk)) is Gaussian and

compute the covariance matrix.

Solution. The vector G =
(
B(t1)√
t1
, B(t2)−B(t1)√

t2−t1
, . . . , B(tn)−B(tn−1)√

tn−tn−1

)
has the standard Gaussian

distribution. Thus, the vector X = (B(t1), . . . , B(tn)), as a linear image of G, has a

Gaussian distribution. Since EB(ti)B(tj) = ti ∧ tj (assuming that B(t) is a standard

Brownian motion, otherwise we have to subtract the mean), the covariance matrix of

X equals [ti ∧ tj]i,j≤n

Question 2. (This exercise shows that just knowing the �nite dimensional distributions

is not enough to determine a stochastic process.) Let B be Brownian motion and

consider an independent random variable U uniformly distributed on [0, 1]. Show that

the process

~Bt =

{
Bt, t 6= U,
0, t = U

has the same �nite dimensional distributions as B but a.s. it is not continuous.

Solution. Given 0 ≤ t1 < . . . < tn ≤ 1, on the even {U 6= ti, i = 1, . . . , n}, which has

probability 1, we have that (~B(t1), . . . , ~B(tn)) = (B(t1), . . . , B(tn)), so ~B and B have

the same �nite dimensional distributions. Since, P
(
limt→U ~Bt = ~BU

)
= P (BU = 0) =∫1

0
P (Bu = 0)du = 0, the process ~B is not continuous a.s.

Question 3. Let B(·) be a standard linear Brownian motion. Prove that

P

(
sup

s,t∈(0,1)

|B(s) − B(t)|

|s− t|1/2
=∞) = 1.

Solution. Consider the events

An =

{∣∣∣∣B( 1

n+ 1

)
− B

(
1

n

)∣∣∣∣ ≥ √2 lnn ∣∣∣∣ 1

n+ 1
−
1

n

∣∣∣∣1/2
}
.
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They are independent. Using a usual estimate for the tail of the standard Gaussian

r.v. (see, e.g., Lemma 12.9 in [P. M�orters, Y. Peres, Brownian Motion ]),

P (An) = P
(
|N(0, 1)| ≥

√
2 lnn

)
≥ 2√

2π

√
2 lnn

√
2 lnn

2
+ 1

e−
√
2 lnn

2
/2 ≥ 1√

2π

1

n
√
lnn

,

so
∑

n P (An) =∞. By the Borel-Cantelli lemma, P (lim supAn) = 1, i.e. with proba-

bility 1, in�nitely many of An's occur. In particular, sups,t∈(0,1) |B(s)−B(t)|/|s− t|
1/2 =∞ with probability 1.
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Brownian Motion II

Solutions

Question 1. Show that a.s. linear Brownian motion has in�nite variation, that is

V
(1)
B (t) = sup

k∑
j=1

|Btj − Btj−1
| =∞

with probability one, where the supremum is taken over all partitions (tj), 0 = t0 <

t1 < . . . < tk = t, of the interval [0, t].

Solution. It was shown in the lecture that

sup
k∑
j=1

|Btj − Btj−1
|2
k→∞−→
a.s.

t,

where the supremum is taken over all partitions 0 = t0 < t1 < . . . < tk = t. We have

k∑
j=1

|Btj − Btj−1
|2 ≤ V (1)

B (t) · sup
j

|Btj − Btj−1
|.

By the uniform continuity of B on [0, t] we get that as k goes to in�nity, the supremum

on the right hand side goes to 0 if the diameter of the partition (tk) goes to zero. The

left hand side goes to a positive t a.s., hence V
(1)
B (t) =∞ a.s.

Question 2. Let B be a standard linear Brownian motion. De�ne

D∗(t) = limh→0Bt+h − Bt
h

, D∗(t) = limh→0Bt+h − Bth
.

It was shown in the lecture that a.s., for every t ∈ [0, 1] either D∗(t) = +∞ or D∗(t) =

−∞ or both. Prove that

(a) for every t ∈ [0, 1] we have P (B has a local maximum at t) = 0

(b) almost surely, local maxima of B exist

(c) almost surely, there exist t∗, t
∗ ∈ [0, 1] such that D∗(t∗) ≤ 0 and D∗(t∗) ≥ 0.
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Solution. Fix t ∈ (0, 1). We have

P (t is a local maximum of B) = P (∃ε > 0 ∀0 < |h| < ε Bt − Bt+h ≥ 0)
≤ P (∃ε > 0 ∀0 < h < ε Bt − Bt+h ≥ 0)
= P (∃ε > 0 ∀0 < h < ε Bh ≥ 0)

= 1− P
(
∀ε > 0 sup

0<h<ε

Bh

)
> 0

= 1− P

(
∀n = 1, 2, . . . sup

0<h<1/n

Bh > 0

)
.

The event

A =

{
∀n = 1, 2, . . . sup

0<h<1/n

Bh > 0

}
=

∞⋂
n=1

{
sup

0<h<1/n

Bh > 0

}

belongs to F0+ =
⋂
t>0Ft. By Blumenthal's 0-1 law, P (A) ∈ {0, 1}. But

P (A) = lim
n→∞P

(
sup

0<h<1/n

Bh > 0

)
≥ lim

n→∞P
(
B1/(2n) > 0

)
=
1

2
.

Hence, P (A) = 1 and, consequently, P (t is a local maximum of B) = 1.

It follows from the continuity of paths that a global maximum of B on [0, 1] always

exists, which is also a local maximum.

If we take t∗ to be a local maximum and t∗ to be a local minimum, then D∗(t∗) ≤ 0
and D∗(t∗) ≥ 0.

Question 3. Let B be a standard linear Brownian motion. Show that a.s.

limn→∞ Bn√
n

= +∞ and limn→∞ Bn√
n

= −∞.
You may want to use the Hewitt-Savage 0− 1 law which states that

Theorem (Hewitt-Savage). Let X1, X2, . . . be a sequence of i.i.d. variables. An event

A = A(X1, X2, . . .) is called exchangeable if A(X1, X2, . . .) ⊂ A(Xσ(1), Xσ(2), . . .) for any
permutation σ of the set {1, 2, . . .} whose support {k ≥ 1, σ(k) 6= k} is a �nite set.

Then for every exchangeable event A we have P ((A) ∈ {0, 1}).
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Solution. Fix c > 0 and take Ac = lim supn{Bn > c
√
n}. We want to show that

⋂∞
c=1Ac

has probability one. Plainly, P (
⋂∞
c=1Ac) = limc→∞ P (Ac). Let Xn = Bn − Bn−1. They

are i.i.d. Notice that

Ac = lim sup
n

{
n∑
j=1

Xj > c
√
n

}
is an exchangeable event. By the Hewitt-Savage 0-1 law we obtain that P (Ac) ∈ {0, 1}.

Since

P (Ac) ≥ lim sup
n→∞ P

(
Bn > c

√
n
)
= P (B1 > c) > 0,

we conclude that P (Ac) = 1.

The claim about lim inf can be proved similarly.
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Brownian Motion III

Solutions

Question 1. Let f : [0,∞) × Rd −→ R be a smooth function and let B be standard

Brownian motion in Rd. Show that

Mt = f(t, Bt) −

∫ t
0

(
ft +

1

2
∆f

)
(s, Bs)ds

is a martingale. Using this, write a solution to the problem{
ut = 1

2
∆u, in (0,∞)× Rd,

u(0, x) = f(x), on Rd,

where f is a given, smooth, compactly supported function (the initial condition)

Solution. In order to show that

Mt = f(t, Bt) −

∫ t
0

(
ft +

1

2
∆f

)
(s, Bs)ds

is a martingale, it is enough to follow closely the proof of Theorem 2.51 from [P. M�orters,

Y. Peres, Brownian Motion ].

Now we construct a solution to the problem{
ut = 1

2
∆u, t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,

where f is a given, smooth, compactly supported function (the initial condition). Let

u(t, x) = Exf(Bt).

Plainly, u(0, x) = Exf(B0) = f(x). Moreover, using the martingale property we just

mentioned we have ExMt = ExM0 = f(x), so

u(t, x) = f(x) + Ex
∫ t
0

1

2
(∆f)(Bs)ds.
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Since f is compactly supported, f and all its derivatives are bounded. Therefore we

can swap the integrals as well as the Laplacian and write

u(t, x) = f(x) +

∫ t
0

Ex
1

2
∆f(Bs)ds = f(x) +

∫ t
0

E
1

2
(∆f)(x+ Bs)ds

= f(x) +

∫ t
0

E
1

2
∆
(
f(x+ Bs)

)
ds = f(x) +

∫ t
0

1

2
∆
(
Ef(x+ Bs)

)
ds

= f(x) +

∫ t
0

1

2
∆
(
Exf(Bs)

)
ds.

Taking the time derivative yields

ut =
1

2
∆
(
Exf(Bt)

)
=
1

2
∆u.

To come up with this solution, we could alternatively suppose that u solves the

problem, observe that Mt = u(t0 − t, Bt) is a martingale which yields that

u(t0, x) = Exu(t0, B0) = ExM0 = ExMt0 = Exu(0, Bt0) = Exf(Bt0),

so u is of the form Exf(Bt)

Question 2. Consider the problem
ut = 1

2
∆u, in R+ × B(0, 1),

u(0, x) = f(x), on B(0, 1),

u(t, z) = g(t, z), on R+ × ∂B(0, 1).

(the heat equation in the cylinder R+×B(0, 1); B(0, 1) ⊂ R2 is the unit disk centred at

the origin), where f, g are smooth functions on B(0, 1 and R+ × ∂B(0, 1) respectively
(the initial data). Show that a solution to this problem is of the form

u(t, x) = Exf(Bt)1{t≤τ} + Exg(t− τ, Bτ)1{t>τ}

where B is a standard planar Brownian motion and τ is the hitting time of ∂B(0, 1).

Solution. Suppose we have a solution u and we want to determine its form. Fix (t0, x)

in R+ × B(0, 1) and consider

Mt = u(t0 − t, Bt).

From Question 1 we know that this is a martingale as long as Bt stays in B(0, 1) so that

u solves the heat equation. Therefore, de�ning τ to be the hitting time of ∂B(0, 1),
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(Mt)t∈[0,τ] is a martingale. Using Doob's optional stopping theorem for 0 ≤ t ∧ τ we

thus get

u(t0, x) = ExM0 = ExMt∧τ = Exu(t0 − t, Bt)1{t≤τ} + Exu(t0 − τ, Bτ)1{t>τ}.

Letting t go to t0 yields

u(t0, x) = Exu(0, Bt0)1{t0≤τ} + Exu(t0 − τ, Bτ)1{t0>τ}.

Given initial and boundary conditions this rewrites as

u(t0, x) = Exf(Bt0)1{t0≤τ} + Exg(t0 − τ, Bτ)1{t0>τ},

so a solution has to be of this form.

Verifying directly that this solves the problem might not be easy. To bypass it, we

could refer to the existence and uniqueness of the solutions of the heat equation.

Question 3. Let B be a d-dimensional standard Brownian motion. For which dimen-

sions, does it hit a single point di�erent from its starting location?

Solution. When d = 1, we know the density of the hitting time of a single point.

Particularly, this stopping time is a.s. �nite.

Let d ≥ 2 and �x two di�erent points a, x ∈ Rd. We will show that Bt starting at

a ∈ Rd, with probability one, never hits x. Let τr be the hitting time of the sphere

∂B(x, r) (r small), let τR be the hitting time of the sphere ∂B(0, R) (R large) and let

τ{x} be the hitting time of x. Notice that limr→0 τr = τ{x} and limR→∞ τR = ∞. From

the lecture we know that (see also Theorem 3.18 in [P. M�orters, Y. Peres, Brownian

Motion ])

Pa(τr < τR) =

{
lnR−ln |a|

lnR−ln r
, d = 2,

R2−d−|a|2−d

R2−d−r2−d , d ≥ 3.

Therefore letting r go to zero yields

Pa(τ{x} < τR) = 0,

hence letting R go to in�nity we obtain Pa(τ{x} <∞) = 0.
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Question 4. Let f be a function compactly supported function in the upper half space

{xd ≥ 0} of Rd. Show that∫
G(x, y)f(y)dy−

∫
G(x, y)f(y)dy = Ex

∫ τ
0

f(Bt)dt,

where B is a standard d-dimensional Brownian motion, τ is the hitting time of the

hyperplane H = {xd = 0}, G(x, y) is the Green's function for Rd, and �y means the

reection of a point y ∈ Rd about the hyperplane H.
This shows that G(x, y) −G(x, �y) is the Green's function in the upper half-space.

Solution. We have (see Theorem 3.32 in [P. M�orters, Y. Peres, Brownian Motion ])∫
G(x, y)f(y)dy = Ex

∫∞
0

f(Bt)dt,∫
G(x, y)f(y)dy =

∫
G(x, y)f(y)dy

= Ex
∫∞
0

f(Bt)dt.

The key observation is that the processes {Bt, t ≥ τ} and {Bt, t ≥ τ} have the same

distribution. Therefore, breaking each integral on the right hand side into two, on [0, τ]

and on [τ,∞) and subtracting the above equalities, we see that two of the integrals

will cancel each other, one will be zero as f is compactly supported in the upper half

plane, and we will get∫
G(x, y)f(y)dy−

∫
G(x, y)f(y)dy = Ex

∫ τ
0

f(Bt)dt,

as required.
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Brownian Motion IV

Solutions

Question 1. Show that Donsker's theorem can be applied to bounded functions which

are continuous only a.s. with respect to the Wiener measure.

Solution. To �x the notation, by (S∗n(t))t∈[0,1] we mean piecewise linear paths con-

structed from a standard simple random walk Sn by rescaling time by n and space by√
n (that is, from Sbntc/

√
n). By (B(t))t∈[0,1] we denote standard Brownian motion in

R. Donsker's principle states that

S∗n convergent in distribution to B (as (C[0, 1], ‖ · ‖∞) valued random variables),

which means that for every bounded continuous function f : C[0, 1] −→ R we have

Ef(S∗n) −→
n→∞ Ef(B). (?)

In applications this might be insu�cient. Consider for instance the function f(u) =

sup{t ≤ 1, u(t) = 0}, u ∈ C[0, 1], that is f(u) is the last zero of a path u. Plainly, f

is bounded but not continuous. Indeed, looking at the piecewise linear paths uε with

uε(0) = 0, uε(1/3) = uε(1) = 1 and uε(2/3) = ε, we have that uε converges to u0 but

f(uε) = 0 for ε > 0, but f(u0) = 2/3. However, if u is a path such that it changes sign

in each interval (f(u) − δ, f(u)), as a generic path of B does!, then f is continuous at u

(why?).

This example motives the following strengthening of Donsker's principle:

for every function f : C[0, 1] −→ R which is bounded and continuous for almost

every Brownian path, that is, P (f is continous at B) = 1, we have (?).

This is however the portmanteau theorem. We shall show that for a sequence

X,X1, X2, . . . of random variables taking values in a metric space (E, ρ) we have that

the condition

lim
n→∞P (Xn ∈ A) = P (X ∈ A) for every Borel subset A of E with P (X ∈ ∂A) = 0 (1)

implies

Ef(Xn) −→ Ef(X) for every bounded function f : E −→ R
such that P (f is continuous at X) = 1.

(2)

This su�ces as (1) is equivalent to the convergence in distribution of Xn to X. To

show that (1) implies (2) the idea will be to approximate f with a piecewise constant

function which expectation will be expressed easily in terms of probabilities that we
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will know converge. We assume that f is bounded, say |f(x)| ≤ K for every x ∈ E.
Fix ε and choose a0 < . . . < al such that a0 < −K, al > K and ai − ai−1 < ε

for i = 1, . . . , l but also P (f(X) = ai) = 0 for 0 ≤ i ≤ l (this is possible as there

are only countably many a's for which P (f(X) = a) > 0.) This sequence sort of

discretises the image of f. Now let Ai = f
−1((ai−1, ai]) for 1 ≤ i ≤ l. Then we get that

∂Ai ⊂ f−1({ai−1, ai}) ∪ D, where D is the set of discontinuity points of f. Therefore

P (X ∈ ∂Ai) ≤ P
(
X ∈ f−1({ai−1, ai}) ∪D

)
= 0. Hence,

l∑
i=1

aiP (Xn ∈ Ai) −→
n→∞

l∑
i=1

aiP (X ∈ Ai)

By the choice of the ai∣∣∣∣∣Ef(Xn) −
l∑
i=1

aiP (Xn ∈ Ai)

∣∣∣∣∣ =
∣∣∣∣∣E

l∑
i=1

(f(Xn) − ai)1{Xn∈Ai}

∣∣∣∣∣ ≤ ε
and the same holds with X in place of Xn. Combining these inequalities yields

lim sup
n→∞ |Ef(Xn) − Ef(X)| ≤ 2ε.

Question 2. Let (Sn)n≥0 be a symmetric, simple random walk.

(i) Show that there are positive constants c and C such that for every n ≥ 1 we have

c√
n
≤ P (Si ≥ 0 for all i = 1, 2, . . . , n) ≤

C√
n
.

(ii) Given a ∈ R �nd the limit

lim
n→∞P

(
n−3/2

n∑
i=1

Si > a

)
.

Solution. Let S0 = 0 and Sn = ε1 + . . . + εn, where the εi are i.i.d. Bernoulli random

variables, P (εi = 1) = 1/2 = P (εi = −1).

To compute the probability

pn = P (∀ 1 ≤ i ≤ n, Si ≥ 0)

we look at the stopping time τ = inf{k ≥ 1, Sk = −1}. Note that

pn = P (Sn ≥ 0, τ > n) = P ({Sn ≥ 0} \ {Sn ≥ 0, τ < n})
= P (Sn ≥ 0) − P (Sn ≥ 0, τ < n) .
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Let S̃n be the random walk Sn reected at time τ with respect to the level −1, that is

S̃j =

{
Sj, j ≤ τ,
−2− Sj, j > τ.

If τ < n then Sn ≥ 0 if equivalent to S̃n ≤ −2, so P (Sn ≥ 0, τ < n) = P
(
S̃n ≤ −2, τ < n

)
,

but {S̃n ≤ −2} ⊂ {τ < n}, therefore we get

pn = P (Sn ≥ 0) − P
(
S̃n ≤ −2

)
,

which by symmetry and the reection principle becomes

pn = P (Sn ≥ 0) − P (Sn ≥ 2) = P (Sn ∈ {0, 1}) =

{(
n
n/2

)
2−n, n is even,(

n
(n−1)/2

)
2−n, n is odd.

.

Using Stirling's formula we easily �nd that cn−1/2 ≤ pn ≤ Cn−1/2 for some positive

constants c and C.

To �nd the limit

lim
n→∞P

(
n−3/2

n∑
j=1

Sj > a

)
we shall use the central limit theorem. Notice that

n∑
j=1

Sj = nε1 + (n− 1)ε2 + . . .+ εn

which of course has the same distribution as
∑n

j=1 jεj. This is a sum of independent

random variables. The variance is

Var

(
n∑
j=1

jεj

)
=

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

Call it σ2n and let Xj = jεj/σn. We want to �nd

lim
n→∞P

(
n∑
j=1

Xj > an
3/2/σn

)
.

It is readily checked that the variables Xj satisfy Lindeberg's condition

n∑
j=1

EXj1{|Xj|>ε} =

n∑
j=1

j21{j>εσn} −→
n→∞ 0

(in fact this sequence is eventually zero, precisely for n such that σn/n > 1/ε). There-

fore, by the central limit theorem we get that

lim
n→∞P

(
n−3/2

n∑
j=1

Sj > a

)
= lim

n→∞P

(
n∑
j=1

Xj > an
3/2/σn

)
= P

(
G > a

√
3
)
,
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where G is a standard Gaussian random variable.

Alternatively, using Donsker's principle we get that

P

(
n−3/2

n∑
j=1

Sj > a

)
= P

(
1

n

n∑
j=1

S j
n
·n√
n
> a

)

tends to

P
(∫ 1

0

Btdt > a

)
.

To �nish, we notice that
∫1
0
Btdt is a Gaussian random variable with mean zero and

variance

E
(∫ 1

0

Btdt

)2
= E
∫ 1
0

∫ 1
0

BsBtdsdt =

∫ 1
0

∫ 1
0

min{s, t}dsdt = 1/3.

Question 3. This question discusses Doob's h-transform.

(i) Let (Xn) 6=0 be an irreducible Markov chain on a �nite state space S with a tran-

sition matrix [pij]i,j∈S. Let D be a subset of S, Ŝ = S \D and τ the hitting time

of D. De�ne the function

h(i) = P (τ =∞ | X0 = i) , i ∈ Ŝ.

Show that h is harmonic, that is

h(i) =
∑
j∈Ŝ

pijh(j), i ∈ Ŝ.

De�ne p̂ij =
h(j)
h(i)
pij, i, j ∈ Ŝ. Show that [p̂ij]i,j∈Ŝ is a stochastic matrix of the

transition probabilities of the chain (Xn) conditioned on never hitting D.

(ii) Let B be a standard linear Brownian motion and let τ be the hitting time of 0.

Set h(x) = Px(τ = ∞). Show that B conditioned on never hitting 0 is a Markov

chain with transition densities

p̂(s, x; t, y) =
h(y)

h(x)

(
p(s, x; t, y) − p(s,−x; t, y

)
, x, y > 0 or x, y < 0

where p is the transition density of B.

(iii) Let B be a 3-dimensional standard Brownian motion. Show that the transition

densities of the process |B|, the Euclidean norm of B, are given by p̂ de�ned

Solution. (i) To get right intuitions, we shall discuss a discrete version of Doob's h

transform �rst.
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Let X0, X1, . . . be a Markov chain on a �nite state space S with transition matrix

P = [pij]i,j∈S. Suppose it is irreducible. Fix a subset D in S and de�ne the reaching

time τ = inf{n ≥ 1, Xn ∈ D} of D. Denote Ŝ = S \D. We would like to know how the

process (Xn) conditioned on never reaching D behaves. We de�ne the function on Ŝ

h(i) = P (τ =∞ | X0 = i) , i ∈ Ŝ

First we check that this function is harmonic in the sense that

h(i) =
∑
j∈Ŝ

pijh(j)

for every i ∈ Ŝ. Notice that

h(i) = P (τ =∞ | X0 = i)

=
∑
j∈Ŝ

P (τ =∞, X1 = j | X0 = i)
=
∑
j∈Ŝ

P (τ =∞, X1 = j, X0 = i)
P (X0 = i)

=
∑
j∈Ŝ

P (τ =∞ | X1 = j, X0 = i)P (X0 = i, X1 = j)

P (X0 = i)

=
∑
j∈Ŝ

P (τ =∞ | X1 = j)P (X1 = j | X0 = i)

=
∑
j∈Ŝ

P (τ =∞ | X0 = j)P (X1 = j | X0 = i)

=
∑
j∈Ŝ

h(j)pij.

This harmonicity of h is equivalent to saying that the matrix P̂ = [p̂ij]i,j∈Ŝ is a transition

matrix of a Markov chain on Ŝ, where

p̂ij =
h(j)

h(i)
pij.

Now we will show that this Markov chain has the same distribution as (Xn) conditioned

on never reaching D. To this end, it is enough to check that for every j0, j1, . . . , jn ∈ Ŝ
we have

P (X1 = j1, . . . , Xn = jn | τ =∞, X0 = j0) = p̂j0,j1 · . . . · p̂jn−1,jn.

Clearly,

P (X1 = j1, . . . , Xn = jn | τ =∞, X0 = j0) = P (X1 = j1, . . . , Xn = jn, τ =∞, X0 = j0)
P (τ =∞, X0 = j0) .
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The denominator is simply P (τ =∞ | X0 = j0)P (X0 = j0) = h(j0)P (X0 = j0). Condi-

tioning consecutively, the numerator becomes

p = P (τ =∞ | Xn = jn, . . . , X0 = j0) · P (Xn = jn | Xn−1 = jn−1, . . . , X0 = j0)

· P (Xn−1 = jn−1 | Xn−2 = jn−2, . . . , X0 = j0)

· . . .
· P (X1 = j1 | X0 = j0)P (X0 = j0) .

Notice that {τ = ∞} = {∀m ≥ n + 1 Xm /∈ Ŝ} ∩ {∀m ≤ n Xm /∈ Ŝ}. Moreover,

{∀m ≤ n Xm /∈ Ŝ} ⊃ {Xn = jn, . . . , X0 = j0}. Since (Xn) is stationary, this yields

P (τ =∞ | Xn = jn, . . . , X0 = j0) =
P (τ =∞, Xn = jn, . . . , X0 = j0)

P (Xn = jn, . . . , X0 = j0)

=
P
(
{∀m ≥ n+ 1 Xm /∈ Ŝ}, Xn = jn, . . . , X0 = j0

)
P (Xn = jn, . . . , X0 = j0)

= P
(
∀m ≥ n+ 1 Xm /∈ Ŝ | Xn = jn, . . . , X0 = j0

)
= P

(
∀m ≥ 1 Xm /∈ Ŝ | X0 = jn

)
= P (τ =∞ | X0 = jn)

= h(jn).

Therefore, the numerator p equals

h(jn)pjn−1,jn · . . . · pj0,j1P (X0 = j0) =
h(jn)

h(jn−1)
pjn−1,jn · . . . ·

h(j1)

h(j0)
pj0,j1 · h(j0)P (X0 = j0)

= p̂j0,j1 · . . . · p̂jn−1,jn · h(j0)P (X0 = j0) ,

where we used the fact that

(ii) Consider standard 1-dimensional Brownian and let τ be the hitting time of

D = {0}, τ = inf{t > 0, Bt = 0}. We would like to understand the process (Bt)

conditioned on never hitting 0. Call this process B̂. Set

h(x) = Px(τ =∞).

We know that this is a harmonic function on R \ {0}. De�ne new probability P̂x by

Px(A) =
Px(A, τ =∞)

h(x)
.

(P̂x is absolutely continuous with respect to Px, that is ÊxY = 1
h(x)

EY1{τ=∞} for any

bounded random variable Y). We will show that the process B̂ is a Markov process

with respect to P̂x with the transition probabilities

p̂(s, x; t, y) =
h(y)

h(x)

(
p(s, x; t, y) − p(s,−x; t, y)

)
, x, y > 0 or x, y < 0.
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That is, the Markov property is

Px(B̂t ∈ A | Fs) =
∫
A

p̂(s, B̂s;y, t)dy

or, equivalently, for any bounded measurable f,

Êx
(
f(B̂t)|Fs

)
=

∫
f(y)p̂(s, B̂s;y, t)dy. (3)

To see why the transition probabilities for B̂ look as claimed, let us look at the following

heuristic computation

Px(Bt = y | τ =∞) =
Px(τ =∞ | Bt = y, τ > t)Px(Bt = y, τ > t)

Px(τ =∞)
.

By the Markov property of B we have that Px(τ = ∞ | Bt = y, τ > t) = h(y), so

p̂(0, x; t, y) should be
h(y)

h(x)
Px(Bt = y, τ > t).

We have Px(Bt = y, τ > t) = Px(Bt = y) − Px(Bt = y, τ ≤ t). The �rst term has the

meaning of p(0, x; t, y). The second term by the reection principle is P−x(Bt = y, τ ≤
t) = P−x(Bt = y) which gives p(0,−x; t, y).

Let us now formally prove (3). The trick is as always to �rst condition on Ft. Doing
this we obtain

Êx
(
f(B̂t)|Fs

)
=

1

h(x)
Ex
(
f(Bt)1{τ=∞}|Fs

)
=

1

h(x)
Ex
(
f(Bt)Ex

(
1{τ=∞}|Ft

)∣∣∣Fs)
=

1

h(x)
Ex
(
f(Bt)1{τ>t}h(Bt)

∣∣∣Fs)
as using the strong Markov property for B we get

Ex
(
1{τ=∞}|Ft

)
= Ex

(
1{∀u>t Bu 6=0}1{τ>t}|Ft

)
= 1{τ>t}Ex

(
1{∀u>t Bu 6=0}|Ft

)
= 1{τ>t}h(Bt).

We write 1{τ>t} = 1 − 1{τ≤t} and using the reection principle as well as the Markov

property for B we get (~B is the reected Brownian motion at τ)

Êx
(
f(B̂t)|Fs

)
=

1

h(x)

(
Ex
(
f(Bt)h(Bt)

∣∣Fs)− E−x

(
f(~Bt)h(~Bt)

∣∣Fs))
=

1

h(x)

∫ (
f(y)h(y)(p(s, Bs; t, y) − f(y)h(y)p(s,−Bs; t, y)

)
dy,

which shows (3).

Notice that the ratio h(y)/h(x) = Py(τ =∞)/Px(τ =∞) can be computed explic-

itly. De�ne the hitting time τa of ∂(−a, a) = {−a, a}. Fix R > r. Since Px(τR < τr) is
a harmonic function in {r < |x| < R} with the boundary conditions: 0 on {|x| = r}, 1 on

{|x| = R}, we get that

Px(τR < τr) =
|x|− r

R− r
.
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Taking the ratio and letting r→ 0 and R→∞ yield

h(y)

h(x)
=

Py(τ =∞)

Px(τ =∞)
=

|y|

|x|
.

(iii) As an application, we will heuristically convince ourselves that the 3 dimen-

sional Bessel process (|Bt|) (the magnitude of a standard 3 dimensional Brownian mo-

tion) is the linear Brownian motion conditioned on never hitting 0. To this end, we

will �nd a one point density of the Bessel process

p(s, x; t, y) = lim
ε→0

1

2ε
P (|Bt| ∈ (y− ε, y+ ε) | |Bs| ∈ (x− ε, x+ ε))

and check that it matches the transition probabilities found in (ii). By the Markov

property of Brownian motion as well as rotational invariance we get that p(s, x; t, y)

is the density gY of the variable

Y =

√
(B

(1)
t−s + x)

2 + (B
(2)
t−s)

2 + (B
(3)
t−s)

2

at y. To �nd it, it will su�ce to �nd the density gZ of the variable

Z =
Y2

t− s
∼

(
G1 +

x√
t− s

)2
+G22 +G

2
3

where G1, G2, G2 are i.i.d. N(0, 1) random variables because then

gY(y) =
d

dy
P (Y ≤ y) = d

dy
P
(
Z ≤ y2

t− s

)
= gZ

(
y2

t− s

)
2y

t− s
.

We know that the distribution of G22 + G
2
3 is χ

2(2) with density 1
2
e−u/21(0,∞)(u). If we

denote by ϕ the density of G1, then the density of (G1 + x/
√
t− s)2 at u > 0 equals

ψ(u) =
d

du
P

((
G1 +

x√
t− s

)2
≤ u

)
=

d

du
P
(
−
√
u−

x√
t− s

≤ G1 ≤
√
u−

x√
t− s

)

=
d

du

∫√u−x/√t−s
−
√
u−x/

√
t−s

ϕ =
1

2
√
u

(
ϕ

(√
u−

x√
t− s

)
+ϕ

(
−
√
u−

x√
t− s

))
.

Therefore

gZ(z) =

∫ z
0

1

2
e−u/2ψ(z− u)du,

which after computing the integral becomes

gZ(z) = ϕ

(
x√
t− s

)
e−z/2

√
t− s

x
sinh

(
x√
t− s

√
z

)
.

Thus

gY(y) =
y

x

1√
t− s

(
ϕ

(
y− x√
t− s

)
−ϕ

(
y+ x√
t− s

))
which agrees with the transition probabilities found in (ii).
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Tomasz Tkocz 08/03/2015

Brownian Motion V

Solutions

Question 1. Let Lt be the local time at zero of linear Brownian motion. Show that

ELt =
√
2t/π.

Solution. We know from the lecture that the local time at zero Lt has the same dis-

tribution as the maximum Mt = max0≤s≤t Bt. Therefore

ELt = EMt =

∫∞
0

P (Mt > u)du.

Moreover, using the reection principle it has been shown that P (Mt > u) = 2P (Bt > u) =

P (|Bt| > u), so we get

ELt =
∫∞
0

P (|Bt| > u)du = E|Bt| =
√
tE|N(0, 1)| =

√
2t

π
.

Question 2. Let a < 0 < b < c and τa, τb, τcbe the hitting times of these levels for one

dimensional Brownian motion. Compute

P (τb < τa < τc) .

Solution. Notice that

P (τb < τa < τc) = P (τb < τa, τa < τc) = P (τa < τc | τb < τa)P (τb < τa) .

Take the stopping time τ = τa ∧ τb = inf{t > 0, Bt ∈ {a, b}} and observe that {τb <

τa} = {Bτ = b}. Therefore using the strong Markov property we obtain

P (τa < τc | τb < τa) = P (τa < τc | Bτ = b) = Pb{τa < τc} = P (τa−b < τc−b) .

Recall that using Wald's lemma it is easy to �nd that P (τa < τb) =
b
b−a

(basically we

combine the equations EBτ = 0 and P (τa < τb) = 1− P (τa > τb)). Thus we get

P (τb < τa < τc) =
c− b

c− b− (a− b)

−a

b− a
=

−a(c− b)

(b− a)(c− a)
.

1



Tomasz Tkocz 07/03/2015

Brownian Motion VI

Solutions

Question 1. Let (Bt) be a standard one dimensional Brownian motion and τ1 the

hitting time of level 1. Show that

E
∫ τ1
0

1{0≤Bs≤1}ds = 1.

Solution. Notice that using Fubini's theorem

µ = E
∫ τ1
0

1{0≤Bs≤1}ds = E
∫∞
0

1{0≤Bs≤1,s<τ1}ds =

∫∞
0

P (0 < Bs < 1, s < τ1)ds.

The integrand equals

P (0 < Bs < 1) − P (0 < Bs < 1, s > τ1) .

Let B∗ be the reected Brownian motion at τ1. Since B∗s = 2 − Bs for s > τ1, we get

from the reection principle that

P (0 < Bs < 1, s > τ1) = P (1 < B∗s < 2, s > τ1) = P (1 < B∗s < 2) = P (1 < Bs < 2) .

Let ϕ be the density of the standard Gaussian distribution and letΦ be its distribution

function, Φ(x) =
∫x
−∞ϕ. We obtain

P (0 < Bs < 1) − P (1 < Bs < 2) = Φ

(
1√
s

)
−Φ(0) −

(
Φ

(
2√
s

)
−Φ

(
1√
s

))
,

so integrating by substitution (t = 1/
√
s) gives

µ =

∫∞
0

(
P (0 < Bs < 1) − P (1 < Bs < 2)

)
ds =

∫∞
0

(
2Φ(t) −Φ(2t) −Φ(0)

)(−1

t2

) ′
dt.

Integrating by parts twice yields (one has to check that the boundary term vanishes

each time; recall also that ϕ ′(x) = −xϕ(x))

µ =

∫∞
0

(
2ϕ(t) − 2ϕ(2t)

)(−1

t

) ′
dt =

∫∞
0

(
− 2tϕ(t) + 4tϕ(t)

)1
t
dt = 2

∫∞
0

ϕ = 1.

1



Question 2. Let H be a hyperplane in Rd passing through the origin. Let B be a d-

dimensional Brownian motion and let τ be the hitting time of H. Show that for every

x ∈ Rd

sup
t>0

Ex|Bt|1{t<τ} <∞.
Solution. We can assume that B starts at 0 and H passes through x. Moreover, by

rotational invariance, we can assume that x = (a, 0, . . . , 0) for some a > 0 so that

H = {y ∈ Rd, y1 = a}. Then τ is in fact the hitting time of the �rst coordinate

W = B(1) of B of level a. Write B = (W, �B), where �B denotes the process of the last

d − 1 coordinates of B. W and �B are independent standard Brownian motions. We

have

E|Bt|1{t<τ} ≤ E|Wt|1{t<τ} + E|�Bt|1{t<τ}.

The second term is easy to handle because of independence

E|�Bt|1{t<τ} = E|�Bt|E1{t<τ} = C
√
tP (t < τ) ,

where C is some positive constant which depends only on d. Using the reection

principle we get that

P (t < τ) = 1− P (|Bt| > a) = P (|Bt| < a) = 2

∫a/√t
0

ϕ < 2
a√
t
ϕ(0)

(by ϕ we denote the density of the standard Gaussian distribution). Therefore

sup
t>0

E|�Bt|1{t<τ} = C sup
t>0

√
tP (t < τ) < 2Ca.

To handle the �rst term, notice that

E|Wt|1{t<τ} =

∫∞
0

P (|Wt| > u, t < τ)du ≤ a+

∫∞
a

P (|Wt| > u, t < τ)du.

Reecting W at τ, we can rewrite the integrand as follows (bear in mind that u > a)

P (|Wt| > u, t < τ) = P (Wt > u, t < τ) + P (Wt < −u, t < τ)

= P (∅) + P (Wt < −u) − P (Wt < −u, t > τ)

= P (Wt > u) − P (W∗t > 2a+ u, t > τ)

= P (Wt > u) − P (W∗t > 2a+ u)

= P (u < Wt < 2a+ u) =

∫ (2a+u)/√t
u/
√
t

ϕ(v)dv.
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Hence, our integral becomes∫∞
a

P (|Wt| > u, t < τ)du =

∫∞
a

∫ (2a+u)/√t
u/
√
t

ϕ(v)dv.

Using Fubini's theorem we get that this equals (|· | of course denotes Lebesgue measure)∫∞
0

∣∣∣{u > a, v√t− 2a < u < v√t}∣∣∣ϕ(v)dv ≤ 2a ∫∞
0

ϕ(v)dv = a.

Putting these together yields

E|Wt|1{t<τ} ≤ a+ a = 2a

and �nally

sup
t>0

E|Bt|1{t<τ} ≤ 2a(1+ C).

Question 3. This is question 3.17 from [P. M�orters, Y. Peres, Brownian Motion ]. It

is left to the diligent student.
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