Problem solving seminar IMC Preparation, Set IV - Solutions

Tomasz Tkocz, Rosemberg Toala

1. Consider the function f defined for positive real numbers x, y, z,

$$
f(x, y, z)=\frac{(x+y+z)(x y+y z+z x)}{(x+y)(y+z)(z+x)}
$$

What is the image of f ?
Solution. We will prove that $\operatorname{Im}(f)=\left(1, \frac{9}{8}\right]$. By expanding the multiplication one can check that the lower bound is equivalent to $0<x y z$, and moreover $f(x, y, z)$ can get arbitrarily close to 1 by taking $z \rightarrow$ 0^{+}.

The upper bound is equivalent to
$x y z \leq \frac{x y z+x z^{2}+y^{2} z+y z^{2}+x y z+x y^{2}+x^{2} z+x^{2} y}{8}$
which follows from the AM-GM inequality.
2. Let $A, B \in M_{2 \times 2}(\mathbb{R})$ such that $A^{2}+B^{2}=A B$. Show that $(A B-B A)^{2}=0$.
Solution. We will use the following result: If $X \in$ $M_{2 \times 2}(\mathbb{R})$, with $\operatorname{tr}(X)=0=\operatorname{det}(X)$ then $X^{2}=0$. One way to see it is by recalling the identity ${ }^{1} X^{2}-$ $\operatorname{tr}(X) X+\operatorname{det}(X) I=0$. Alternately, it is clear by using the Jordan Canonical form.

Now, $X=A B-B A$ is clearly traceless. To compute the determinant we use the cubic root of unity $\omega=e^{2 \pi i / 3}$, and note that

$$
\begin{aligned}
(A+\omega B)(A+\bar{\omega} B) & =A^{2}+B^{2}+\omega B A+\bar{\omega} A B \\
& =(1+\bar{\omega}) A B+\omega B A \\
& =-\omega A B+\omega B A
\end{aligned}
$$

Hence

$$
\begin{aligned}
\omega^{2} \operatorname{det}(A B-B A) & =\operatorname{det}(A+\omega B) \operatorname{det}(A+\bar{\omega} B) \\
& =\operatorname{det}(A+\omega B) \operatorname{det}(A+\omega B) \\
& =|\operatorname{det}(A+\omega B)|^{2}
\end{aligned}
$$

The latter being purely real, therefore $\omega^{2} \operatorname{det}(A B-$ $B A=0$ and we are done.

[^0]3. Let $n \geq 3$. Let $A_{1} A_{2} \ldots A_{n}$ be a regular n-gon inscribed in a circle with radius 1. Prove that
$$
\prod_{k=1}^{n-1}\left(5-\left|A_{1} A_{k+1}\right|^{2}\right)=F_{n}^{2}
$$
where the sequence $\left(F_{n}\right)$ is defined recursively as $F_{0}=0, F_{1}=1$, $F_{n+1}=F_{n}+F_{n-1}, n \geq 1$ (the Fibonacci sequence).
Solution. Let $\epsilon_{n}=e^{2 \pi i / n}$. Then $\epsilon_{n}^{k}, 0 \leq k<n$ are consecutive vertices of the regular n-gon inscribed into the unit circle $\{z \in \mathbb{C},|z|=1\}$. We can take $A_{k}=\epsilon_{n}^{k-1}$ and then $\left|A_{1} A_{k+1}\right|^{2}=\left|1-\epsilon_{n}^{k}\right|^{2}=2-$ $2 \mathfrak{R e}\left(\epsilon_{n}^{k}\right)=2-2 \cos \left(\frac{2 \pi k}{n}\right), k \geq 1$. By the well-known Binet's formula we have
$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Thus we want to show that

$$
\begin{align*}
& \prod_{k=1}^{n-1}\left(3+2 \cos \left(\frac{2 \pi k}{n}\right)\right) \\
& \quad=\frac{1}{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)^{2}
\end{align*}
$$

To verify this identity observe that for any reals x, y we have

$$
x^{n}-y^{n}=\prod_{k=0}^{n}\left(x-\epsilon_{n}^{k} y\right)
$$

hence

$$
\begin{aligned}
\left(x^{n}-y^{n}\right)^{2} & =\left|x^{n}-y^{n}\right|^{2}=\prod_{k=0}^{n-1}\left|x-\epsilon_{n}^{k} y\right|^{2} \\
& =\prod_{k=0}^{n-1}\left(x^{2}+y^{2}-2 x y \Re \mathfrak{R e}\left(\epsilon_{n}^{k}\right)\right) \\
& =\prod_{k=0}^{n-1}\left(x^{2}+y^{2}-2 x y \cos (2 \pi k / n)\right) .
\end{aligned}
$$

For $x=(1+\sqrt{5}) / 2, y=(1-\sqrt{5}) / 2$ we have $x^{2}+y^{2}=$ 3 and $x y=-1$, hence (\star)
4. Fix $1 \leq k \leq n$. Let A_{1}, \ldots, A_{m} be distinct subsets of the set $\{1, \ldots, n\}$ such that $\left|A_{i} \cap A_{j}\right|=k$ for all $i \neq j$. Prove that $m \leq n$.

Here $|A|$ denotes the cardinality of A.
Solution. Let $v_{i} \in \mathbb{R}^{n}, i \leq m$, be the characteristic vector of A_{i}, i.e. if $j \in A_{i}$, then its $j^{\text {th }}$ coordinate is 1 , otherwise it is 0 . Then $\left\langle v_{i}, v_{j}\right\rangle=k$, for $i \neq j$, and $\left\langle v_{i}, v_{i}\right\rangle=\left|A_{i}\right|$.

If we show that v_{i} 's are linearly independent, then necessarily $m \leq n$ and we are done. Suppose $\sum_{i=1}^{m} \lambda_{i} v_{i}=0$ with not all λ_{i} 's being 0 . Then there are (at least) two indices, say $s \neq t$ for which $\lambda_{s} \neq 0 \neq \lambda_{t}$. Observe that clearly $\left|A_{i}\right| \geq k$, hence

$$
\begin{aligned}
0 & =\left\langle\sum_{i} \lambda_{i} v_{i}, \sum_{j} \lambda_{j} v_{j}\right\rangle=\sum_{i} \lambda_{i}^{2}\left|A_{i}\right|+\sum_{i \neq j} \lambda_{j} \lambda_{j} \cdot k \\
& =\sum_{i} \lambda_{i}^{2}\left(\left|A_{i}\right|-k\right)+k\left(\sum_{i} \lambda_{i}\right)^{2} \\
& \geq \lambda_{s}^{2}\left(\left|A_{s}\right|-k\right)+\lambda_{t}^{2}\left(\left|A_{t}\right|-k\right)
\end{aligned}
$$

It follows that $\left|A_{s}\right|=\left|A_{t}\right|=k$ which together with $\left|A_{s} \cap A_{t}\right|=k$ implies that $A_{s}=A_{t}$, a contradiction.
5. Let $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be vectors of length 1 such that $\left|v_{i}-v_{j}\right|>$ $\sqrt{2}$ for all $i \neq j$. Prove that any n of them are linearly independent.
Solution. Observe that for $i \neq j$ we have

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{-\left|v_{i}-v_{j}\right|^{2}+\left|v_{i}\right|^{2}+\left|v_{j}\right|^{2}}{2}<0
$$

thus we conclude by the following lemma.
Lemma. Let vectors $v_{0}, \ldots, v_{n} \in \mathbb{R}^{n}$ satisfy $\left\langle v_{i}, v_{j}\right\rangle<0$ for all $i \neq j$. Then any n of them are linearly independent.

Proof. Consider

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=0
$$

By taking the inner product with v_{0} we see that to show that all λ_{i} 's are zero it is enough to show that they have the same sign. Without loss of generality let $\lambda_{1}, \ldots, \lambda_{k} \geq 0, \lambda_{k+1}, \ldots, \lambda_{n}<0$. If $k=n$ we are done. If not, consider

$$
\sum_{i \leq k} \lambda_{i} v_{i}=\sum_{j>k}\left(-\lambda_{j}\right) v_{j}
$$

and take the inner product with $\sum_{i \leq k} \lambda_{i} v_{i}$ to get

$$
\begin{aligned}
0 & \leq\left|\sum_{i \leq k} \lambda_{i} v_{i}\right|^{2}=\left\langle\sum_{i \leq k} \lambda_{i} v_{i}, \sum_{j>k}\left(-\lambda_{j}\right) v_{j}\right\rangle \\
& =\sum_{i \leq k, j>k} \lambda_{i} \lambda_{j}\left(-\left\langle v_{i}, v_{j}\right\rangle\right) .
\end{aligned}
$$

As in the last sum $\lambda_{i} \lambda_{j} \leq 0$, there is actually $\lambda_{i} \lambda_{j}=$ 0 for every $i \leq k$ and $j>k$. This is possible only if $\lambda_{i}=0$ for every $i \leq k$, so all λ_{i} 's have the same sign.

[^0]: ${ }^{1}$ Cayley-Hamilton theorem

