Problem solving seminar IMC Preparation, Set IV

Instructions

- 1. Work independently.
- 2. Do not use any books, notes, nor calculators.
- 3. Please write down your solutions for each problem on **individual** sheets
- 4. Please submit your work via pigeonholes opposite room B1.38 or email (Problems 1, 2, 3, 4 & 5 to TT) by Friday, 16 May, 11:59 AM
- 5. The ranking is available online at http://www.mimuw.edu.pl/~tkocz/teaching_1314.php. The winner will get a prize (a box of chocolates)!

Good luck! Rosemberg Toala & Tomasz Tkocz

Problems

1. Consider the function f defined for positive real numbers x, y, z,

$$f(x, y, z) = \frac{(x + y + z)(xy + yz + zx)}{(x + y)(y + z)(z + x)}.$$

What is the image of f?

- **2.** Let $A, B \in M_{2 \times 2}(\mathbb{R})$ be such that $A^2 + B^2 = AB$. Show that $(AB BA)^2 = 0$.
- **3.** Let $n \ge 3$. Let $A_1 A_2 \ldots A_n$ be a regular *n*-gon inscribed in a circle with radius 1. Prove that

$$\prod_{k=1}^{n-1} (5 - |A_1 A_{k+1}|^2) = F_n^2,$$

where the sequence (F_n) is defined recursively as $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$, $n \ge 1$ (the Fibonacci sequence).

4. Fix $1 \le k \le n$. Let A_1, \ldots, A_m be distinct subsets of the set $\{1, \ldots, n\}$ such that $|A_i \cap A_j| = k$ for all $i \ne j$. Prove that $m \le n$.

Here |A| denotes the cardinality of A.

5. Let $v_0, v_1, \ldots, v_n \in \mathbb{R}^n$ be vectors of length 1 such that $|v_i - v_j| > \sqrt{2}$ for all $i \neq j$. Prove that any n of them are linearly independent.