Problem solving seminar IMC Preparation, Set III

Instructions

1. Work independently.
2. Do not use any books, notes, nor calculators.
3. Please write down your solutions for each problem on individual sheets
4. Please submit your work via pigeonholes opposite room B1.38 or email (Problems 1, 2 \& 3 to RT, $4 \& 5$ to TT) by Friday, 9 May, 11:59 AM
5. The ranking is available online at http://www.mimuw.edu.pl/~tkocz/teaching_1314.php. The winner will get a prize (a box of chocolates)!

Good luck!
Rosemberg Toala \& Tomasz Tkocz

Problems

1. Complex numbers a, b, c satisfy $a|b c|+b|c a|+c|a b|=0$. Prove that

$$
|(a-b)(b-c)(c-a)| \geq 3 \sqrt{3}|a b c|
$$

2. Determine whether the series $\sum_{n=0}^{\infty} \arctan \left(\frac{1}{1+n+n^{2}}\right)$ converges. If so, compute its value.
3. The edges of a complete graph are painted with two colours, in such a way that for any four vertices there is a monochromatic triangle. Prove that it is possible to split the vertices into two groups such that each group is a complete monochromatic graph.
4. Let complex numbers $z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}$ be such that $z_{k}-w_{l} \neq 0$ for every k, l. Prove that

$$
\operatorname{det}\left[\frac{1}{z_{k}-w_{l}}\right]_{k, l=1, \ldots, n}=\frac{\prod_{1 \leq k<l \leq n}\left(z_{l}-z_{k}\right)\left(w_{k}-w_{l}\right)}{\prod_{1 \leq k, l \leq n}\left(z_{k}-w_{l}\right)}
$$

5. Let $d \geq 2$ and let A be a bounded open subset of \mathbb{R}^{d}. Prove that there exist a finite or countable family \mathcal{F} of pairwise disjoint closed balls such that $\bigcup_{B \in \mathcal{F}} B \subset A$ and $A \backslash \bigcup_{B \in \mathcal{F}} B$ is of measure zero.
A set $E \subset \mathbb{R}^{d}$ is of measure zero if for every $\epsilon>0$ there are closed balls B_{1}, B_{2}, \ldots such that $\bigcup_{i=1}^{\infty} B_{i} \supset E$ and $\sum_{i=1}^{\infty}\left|B_{i}\right|<\epsilon$, where $|B|$ denotes the volume of B.
