Problem solving seminar IMC Preparation, Set III

Instructions

- 1. Work independently.
- 2. Do not use any books, notes, nor calculators.
- 3. Please write down your solutions for each problem on **individual** sheets
- Please submit your work via pigeonholes opposite room B1.38 or email (Problems 1, 2 & 3 to RT, 4 & 5 to TT) by Friday, 9 May, 11:59 AM
- 5. The ranking is available online at http://www.mimuw.edu.pl/~tkocz/teaching_1314.php. The winner will get a prize (a box of chocolates)!

Good luck! Rosemberg Toala & Tomasz Tkocz

Problems

1. Complex numbers a, b, c satisfy a|bc| + b|ca| + c|ab| = 0. Prove that

$$|(a-b)(b-c)(c-a)| \ge 3\sqrt{3}|abc|$$

2. Determine whether the series $\sum_{n=0}^{\infty} \arctan\left(\frac{1}{1+n+n^2}\right)$ converges. If so, compute its value.

3. The edges of a complete graph are painted with two colours, in such a way that for any four vertices there is a monochromatic triangle. Prove that it is possible to split the vertices into two groups such that each group is a complete monochromatic graph.

4. Let complex numbers $z_1, \ldots, z_n, w_1, \ldots, w_n$ be such that $z_k - w_l \neq 0$ for every k, l. Prove that

$$\det\left[\frac{1}{z_k - w_l}\right]_{k,l=1,\dots,n} = \frac{\prod_{1 \le k < l \le n} (z_l - z_k)(w_k - w_l)}{\prod_{1 \le k,l \le n} (z_k - w_l)}.$$

5. Let $d \ge 2$ and let A be a bounded open subset of \mathbb{R}^d . Prove that there exist a finite or countable family \mathcal{F} of pairwise disjoint closed balls such that $\bigcup_{B \in \mathcal{F}} B \subset A$ and $A \setminus \bigcup_{B \in \mathcal{F}} B$ is of measure zero.

A set $E \subset \mathbb{R}^d$ is of measure zero if for every $\epsilon > 0$ there are closed balls B_1, B_2, \ldots such that $\bigcup_{i=1}^{\infty} B_i \supset E$ and $\sum_{i=1}^{\infty} |B_i| < \epsilon$, where |B| denotes the volume of B.