Problem solving seminar IMC Preparation, Set II - Solutions
 Tomasz Tkocz, Rosemberg Toala

1. Let P be a polyhedron whose edges have all the same length and are tangent to a given sphere. Suppose in addition that (at least) one face of P has an odd number of edges. Show that the vertices of P are all on a sphere.

Solution. The main idea is to conjecture that the two spheres have the same centre. Let O be the centre, r and R the radii, where $R^{2}=r^{2}+(d / 2)^{2}, d$ being the length of the edges. Choose an edge defined by the points A, B; we have two cases:

1. The sphere is tangent to $A B$ at the midpoint. Then by construction $O A=O B=R$.
2. The sphere is tangent to $A B$ at any other point. Then the three lengths $O A, O B$ and R are all different. Moreover, a contiguous edge $B C$ satisfies $O C=O A$ by congruence of triangles (the distance from B to the tangent points are equal).

In the second case we have that a face containing such points must have an even number of vertices, but then this property 'propagates' to the whole polyhedron, contradicting the hypothesis of a face with an odd number of vertices. Therefore all the vertices are in the desired sphere.
2. Let $n \geq 1$ be an integer. Prove that $\sum \frac{1}{p q}=1 / 2$, where the summation is taken over all integers p, q which are coprime and satisfy $0<p<q \leq n, p+q>n$.

Solution. Let $f(n)$ be sum. We will prove $f(n)-$ $f(n-1)=0$. The summands in $f(n)$ not in $f(n-1)$ are those with $(p, q)=1$ and $q=n$. The summands in $f(n-1)$ not in $f(n)$ are those with $(p, q)=1$ and $p+q=n$, or equivalently, $(p, n)=1, p<n-p$.

Denote by $1=p_{1}<p_{2}<\ldots<p_{k}=n-1$, the numbers such that $\left(p_{i}, n\right)=1$. The sum $f(n)$ can be splitted into those with $p_{i}<n / 2$ and those with $p_{j}>n / 2$, the latter terms can be written as $\frac{1}{p_{j} n}=$ $\frac{1}{\left(n-p_{i}\right) n}$, with now $p_{i}<n / 2$.
Finally $\frac{1}{p_{i} n}+\frac{1}{\left(n-p_{i}\right) n}=\frac{1}{\left(n-p_{i}\right) p_{i}}$. So the two sums are equal.
3. Let $\mathcal{F}=\left\{B_{i}\right\}_{i \in I}$ be a family of open Euclidean balls in \mathbb{R}^{d}, i.e. each set B_{i} is of the form $\left\{x \in \mathbb{R}^{d},|x-a|<r\right\}$ for some $a \in \mathbb{R}^{d}$ and $r>0$, where $|x|=\sqrt{x_{1}^{2}+\ldots+x_{d}^{2}}$ denotes the usual Euclidean distance in \mathbb{R}^{d}. Prove that
(i) if \mathcal{F} is finite, i.e. $\# I<\infty$, say $I=\{1, \ldots, n\}$, then there are $1 \leq i_{1}, \ldots, i_{k} \leq n$ such that the balls $B_{i_{1}}, \ldots, B_{i_{k}}$ are pairwise disjoint and

$$
B_{1} \cup \ldots \cup B_{n} \subset 3 B_{i_{1}} \cup \ldots 3 B_{i_{k}}
$$

(ii) in general, if the radii of all B_{i} 's are bounded, then there is a subfamily $\mathcal{G}=\left\{B_{j}\right\}_{j \in J} \subset \mathcal{F}, J \subset I$ with the property that balls in \mathcal{G} are pairwise disjoint and

$$
\bigcup_{i \in I} B_{i} \subset \bigcup_{j \in J} 5 B_{j}
$$

Here by $a B$ we mean the ball with the same centre as B and the radius multiplied by a.

Solution.

(i) Let i_{1} be such that the ball $B_{i_{1}}$ has the largest radius among all B_{i} 's. Suppose that i_{1}, \ldots, i_{j} have been chosen. Let $B_{i_{j+1}}$ be the ball which is disjoint from $B_{i_{1}} \cup \ldots \cup B_{i_{j}}$ and has the largest possible radius. If there is not such a ball, then set $k:=j$ and stop the procedure.

Now we prove that for every i we have $B_{i} \subset$ $\bigcup_{s=1}^{k} 3 B_{i_{s}}$. It it obvious when i is one of the i_{j} 's. If not, take the smallest s such that B_{i} is disjoint from $B_{j_{s}}$. By the construction such s exists and $B_{j_{s}}$ has its radius greater than or equal to the radius of B_{i}, hence $B_{i} \subset 3 B_{j_{s}}$ which easily follows from the triangle inequality.
(ii) Let R be the supremum of the radii of B_{i} 's and let \mathcal{F}_{n} be the subfamily of balls with radius from the interval $\left(2^{-n-1} R, 2^{-n} R\right], n=0,1, \ldots$. Let $\mathcal{H}_{0}=\mathcal{F}_{0}, \mathcal{G}_{0}$ be the maximal subfamily of \mathcal{H}_{0} consisting of pairwise disjoint balls. Suppose that $\mathcal{G}_{0}, \ldots, \mathcal{G}_{k}$ have been chosen. Then
we set \mathcal{H}_{k+1} to be the collection of the balls from \mathcal{F}_{k+1} which are disjoint from $\mathcal{G}_{0} \cup \ldots \cup \mathcal{G}_{k}$ and we define \mathcal{G}_{k+1} as the maximal subfamily of \mathcal{H}_{k+1} consisting of pairwise disjoint balls. Let $\mathcal{G}=\bigcup_{n \geq 0} \mathcal{G}_{n}$.
Now we show that for every $B \in \mathcal{F}$ we have $B \subset \bigcup_{U \in \mathcal{G}} 5 U$. Let n be such that $B \in \mathcal{F}_{n}$. We can assume that $B \notin \mathcal{G}$. Either $B \notin \mathcal{H}_{n}$, so $n>$ 0 and B intersects a ball from $\mathcal{G}_{0} \cup \ldots \cup \mathcal{G}_{n-1}$, or $B \in \mathcal{H}_{n}$, so B intersects a ball from \mathcal{G}_{n}. In any case, B intersects a ball $U \in \mathcal{G}_{0} \cup \ldots \cup \mathcal{G}_{n}$. Since the radius of B is greater than $2^{-n-1} R$ and the radius of U is less than or equal to $2^{-n} R$, the triangle inequality yields $B \subset 5 U$.
4. Given a positive number c prove the inequalities

$$
\frac{1}{c^{2}+1 / 2}<\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+c^{2}\right)^{2}}<\frac{1}{c^{2}} .
$$

Solution. First notice that for $n \geq 1$

$$
=\frac{1}{\frac{1}{\left(n-\frac{1}{2}\right)^{2}+c^{2}-\frac{1}{4}}-\frac{1}{\left(n+\frac{1}{2}\right)^{2}+c^{2}-\frac{1}{4}}} \begin{aligned}
& \frac{2 n}{\left(n^{2}+c^{2}-n\right)\left(n^{2}+c^{2}+n\right)}>\frac{2 n}{\left(n^{2}+c^{2}\right)^{2}} .
\end{aligned}
$$

Adding up these inequalities and performing the telescoping summation which occurs on the right hand side yields the desired upper bound.

Now observe that we have the inequalities

$$
\begin{aligned}
& \frac{1}{\left(n-\frac{1}{2}\right)^{2}+c^{2}+\frac{1}{4}}-\frac{1}{\left(n+\frac{1}{2}\right)^{2}+c^{2}+\frac{1}{4}} \\
& =\frac{2 n}{\left(n^{2}+c^{2}\right)^{2}+c^{2}+\frac{1}{4}}<\frac{2 n}{\left(n^{2}+c^{2}\right)^{2}}, \quad n \geq 1
\end{aligned}
$$

and add them up to get the desired lower bound.
5. Using two colours, is it possible to colour the set of nonnegative real numbers (assign to each nonnegative number one of two colours) so that whenever $a+b=2 c$ for some $a, b, c \geq 0$, then a, b, c will not be of the same colour?
Solution. We shall show that such a colouring does not exist. Suppose that we coloured each nonnegative number white or red and the property that whenever $a+b=2 c$ then a, b, c are not of the same colour holds. Let us say that 6 is white. One of the numbers $8,10,12$ has to be white as well. Call it x. Then the numbers $2 x-6$ and $2 \cdot 6-x$ have to be both red. So their mean $3+x / 2$ is white. We obtain three white numbers $6, x, 3+x / 2$ satisfying $a+b=2 c-$ contradiction.

