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1. Let P be a polyhedron whose edges have all the same length and
are tangent to a given sphere. Suppose in addition that (at least)
one face of P has an odd number of edges. Show that the vertices
of P are all on a sphere.

Solution. The main idea is to conjecture that
the two spheres have the same centre. Let O be the
centre, r and R the radii, where R2 = r2 + (d/2)2, d
being the length of the edges. Choose an edge defined
by the points A, B; we have two cases:

1. The sphere is tangent to AB at the midpoint.
Then by construction OA = OB = R.

2. The sphere is tangent to AB at any other point.
Then the three lengths OA, OB and R are all
different. Moreover, a contiguous edge BC sat-
isfies OC = OA by congruence of triangles (the
distance from B to the tangent points are equal).

In the second case we have that a face containing
such points must have an even number of vertices,
but then this property ‘propagates’ to the whole
polyhedron, contradicting the hypothesis of a face
with an odd number of vertices. Therefore all the
vertices are in the desired sphere.

2. Let n ≥ 1 be an integer. Prove that
∑ 1

pq
= 1/2, where the

summation is taken over all integers p, q which are coprime and
satisfy 0 < p < q ≤ n, p + q > n.

Solution. Let f(n) be sum. We will prove f(n)−
f(n−1) = 0. The summands in f(n) not in f(n−1)
are those with (p, q) = 1 and q = n. The summands
in f(n− 1) not in f(n) are those with (p, q) = 1 and
p + q = n, or equivalently, (p, n) = 1, p < n− p.

Denote by 1 = p1 < p2 < ... < pk = n − 1, the
numbers such that (pi, n) = 1. The sum f(n) can
be splitted into those with pi < n/2 and those with
pj > n/2, the latter terms can be written as 1

pjn
=

1
(n−pi)n , with now pi < n/2.

Finally 1
pin

+ 1
(n−pi)n = 1

(n−pi)pi . So the two sums
are equal.

3. Let F = {Bi}i∈I be a family of open Euclidean balls in Rd, i.e.
each set Bi is of the form {x ∈ Rd, |x − a| < r} for some a ∈ Rd

and r > 0, where |x| =
√

x2
1 + . . . + x2

d denotes the usual Euclidean

distance in Rd. Prove that

(i) if F is finite, i.e. #I < ∞, say I = {1, . . . , n}, then there
are 1 ≤ i1, . . . , ik ≤ n such that the balls Bi1 , . . . , Bik are
pairwise disjoint and

B1 ∪ . . . ∪Bn ⊂ 3Bi1 ∪ . . . 3Bik .

(ii) in general, if the radii of all Bi’s are bounded, then there is a
subfamily G = {Bj}j∈J ⊂ F , J ⊂ I with the property that
balls in G are pairwise disjoint and⋃

i∈I

Bi ⊂
⋃
j∈J

5Bj .

Here by aB we mean the ball with the same centre as B and the
radius multiplied by a.

Solution.

(i) Let i1 be such that the ball Bi1 has the largest
radius among all Bi’s. Suppose that i1, . . . , ij
have been chosen. Let Bij+1 be the ball which is
disjoint from Bi1 ∪ . . .∪Bij and has the largest
possible radius. If there is not such a ball, then
set k := j and stop the procedure.

Now we prove that for every i we have Bi ⊂⋃k
s=1 3Bis . It it obvious when i is one of the

ij ’s. If not, take the smallest s such that Bi is
disjoint from Bjs . By the construction such s
exists and Bjs has its radius greater than or
equal to the radius of Bi, hence Bi ⊂ 3Bjs

which easily follows from the triangle inequal-
ity.

(ii) Let R be the supremum of the radii of Bi’s and
let Fn be the subfamily of balls with radius
from the interval (2−n−1R, 2−nR], n = 0, 1, . . ..
Let H0 = F0, G0 be the maximal subfamily of
H0 consisting of pairwise disjoint balls. Sup-
pose that G0, . . . ,Gk have been chosen. Then
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we set Hk+1 to be the collection of the balls
from Fk+1 which are disjoint from G0 ∪ . . .∪Gk
and we define Gk+1 as the maximal subfamily of
Hk+1 consisting of pairwise disjoint balls. Let
G =

⋃
n≥0 Gn.

Now we show that for every B ∈ F we have
B ⊂

⋃
U∈G 5U . Let n be such that B ∈ Fn. We

can assume that B /∈ G. Either B /∈ Hn, so n >
0 and B intersects a ball from G0∪ . . .∪Gn−1, or
B ∈ Hn, so B intersects a ball from Gn. In any
case, B intersects a ball U ∈ G0∪ . . .∪Gn. Since
the radius of B is greater than 2−n−1R and the
radius of U is less than or equal to 2−nR, the
triangle inequality yields B ⊂ 5U .

4. Given a positive number c prove the inequalities

1

c2 + 1/2
<

∞∑
n=1

2n

(n2 + c2)2
<

1

c2
.

Solution. First notice that for n ≥ 1

1(
n− 1

2

)2
+ c2 − 1

4

− 1(
n + 1

2

)2
+ c2 − 1

4

=
2n

(n2 + c2 − n)(n2 + c2 + n)
>

2n

(n2 + c2)2
.

Adding up these inequalities and performing the tele-
scoping summation which occurs on the right hand
side yields the desired upper bound.

Now observe that we have the inequalities

1(
n− 1

2

)2
+ c2 + 1

4

− 1(
n + 1

2

)2
+ c2 + 1

4

=
2n

(n2 + c2)2 + c2 + 1
4

<
2n

(n2 + c2)2
, n ≥ 1

and add them up to get the desired lower bound.

5. Using two colours, is it possible to colour the set of nonnegative
real numbers (assign to each nonnegative number one of two colours)
so that whenever a + b = 2c for some a, b, c ≥ 0, then a, b, c will not
be of the same colour?

Solution. We shall show that such a colouring
does not exist. Suppose that we coloured each non-
negative number white or red and the property that
whenever a + b = 2c then a, b, c are not of the same
colour holds. Let us say that 6 is white. One of the
numbers 8, 10, 12 has to be white as well. Call it x.
Then the numbers 2x−6 and 2 ·6−x have to be both
red. So their mean 3+x/2 is white. We obtain three
white numbers 6, x, 3 + x/2 satisfying a + b = 2c –
contradiction.
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