Problem solving seminar IMC Preparation, Set II

Instructions

- 1. Work independently.
- 2. Do not use any books, notes, nor calculators.
- 3. Please write down your solutions for each problem on individual sheets
- 4. Please submit your work via pigeonholes opposite room B1.38 or email (Problems 1, 2 to RT, 3, 4 & 5 to TT) by Friday, 2 May, 11:59 AM

Good luck! Rosemberg Toala & Tomasz Tkocz

Problems

1. Let P be a polyhedron whose edges have all the same length and are tangent to a given sphere. Suppose in addition that (at least) one face of P has an odd number of edges. Show that the vertices of P are all on a sphere.

2. Let $n \ge 1$ be an integer. Prove that $\sum \frac{1}{pq} = 1/2$, where the summation is taken over all integers p, q which are coprime and satisfy 0 n.

3. Let $\mathcal{F} = \{B_i\}_{i \in I}$ be a family of open Euclidean balls in \mathbb{R}^d , i.e. each set B_i is of the form $\{x \in \mathbb{R}^d, |x-a| < r\}$ for some $a \in \mathbb{R}^d$ and r > 0, where $|x| = \sqrt{x_1^2 + \ldots + x_d^2}$ denotes the usual Euclidean distance in \mathbb{R}^d . Prove that

(i) if \mathcal{F} is finite, i.e. $\#I < \infty$, say $I = \{1, \ldots, n\}$, then there are $1 \le i_1, \ldots, i_k \le n$ such that the balls B_{i_1}, \ldots, B_{i_k} are pairwise disjoint and

$$B_1 \cup \ldots \cup B_n \subset 3B_{i_1} \cup \ldots 3B_{i_k}.$$

(ii) in general, if the radii of all B_i 's are bounded, then there is a subfamily $\mathcal{G} = \{B_j\}_{j \in J} \subset \mathcal{F}$, $J \subset I$ with the property that balls in \mathcal{G} are pairwise disjoint and

$$\bigcup_{i\in I} B_i \subset \bigcup_{j\in J} 5B_j$$

Here by cB we mean the ball with the same centre as B and the radius multiplied by c.

4. Given a positive number c prove the inequalities

$$\frac{1}{c^2 + 1/2} < \sum_{n=1}^{\infty} \frac{2n}{(n^2 + c^2)^2} < \frac{1}{c^2}.$$

5. Using two colours, is it possible to colour the set of nonnegative real numbers (assign to each nonnegative number one of two colours) so that whenever a + b = 2c for some $a, b, c \ge 0$, then a, b, c will *not* be of the same colour?