Problem solving seminar IMC Preparation, Set I - Solutions
 Rosemberg Toala, Tomasz Tkocz

1. Let A be a $n \times n$ matrix such that $A u$ is orthogonal to u for every vector $u \in \mathbb{R}^{n}$. Prove that
a) A is skew-symmetric, i.e., $A^{t}=-A$.
b) If n is odd, show that there exists $v \in \mathbb{R}^{n}$ such that $A v=0$.

Solution.

a) We use the orthogonality condition with the vectors $u+v, u$ and v :

$$
\begin{aligned}
0 & =\langle A(u+v), u+v\rangle \\
& =\langle A u, u\rangle+\langle A u, v\rangle+\langle A v, u\rangle+\langle A v, v\rangle \\
& =\langle A u, v\rangle+\langle A v, u\rangle
\end{aligned}
$$

Hence $\left\langle u, A^{t} v\right\rangle=\langle A u, v\rangle=\langle u,-A v\rangle$ for all u, v. That is, $A^{t}=-A$.
b) By a) we have

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(A^{t}\right) \\
& =\operatorname{det}(-A) \\
& =(-1)^{n} \operatorname{det}(A) .
\end{aligned}
$$

Since by hypothesis n is odd, we have $\operatorname{det}(A)=$ 0 . Therefore A has an eigenvalue equal to 0 and the corresponding eigenvector gives us the desired $v \in \mathbb{R}^{n}$.
2. Consider 2014 points in general position (no three collinear) on the plane, and all the segments joining any two of them. Show that one of the following conditions always hold:
(i) It is possible to reach a point from any other by only using segments with rational length.
(ii) It is possible to reach a point from any other by only using segments with irrational length.
Solution. We will prove the general statement for n points by induction. For $n=2$ the statement is clear.

Consider now $n+1$ points in general position, and take 3 different subsets of n points (this is possible
for any $n>2$), by induction hypothesis they satisfy the condition, but 2 of them have to agree, say "they are both rational", hence the set of $n+1$ points "is also rational".
3. Any parabola P divides the plane into a convex region $A(P)$ and a non-convex $B(P)$. Is it possible to find a positive integer n and parabolas $P_{1}, P_{2}, \ldots, P_{n}$ such that $A\left(P_{1}\right), A\left(P_{2}\right), \ldots, A\left(P_{n}\right)$ cover the whole plane?

Solution. Answer: No.
The idea is that you cannot cover all the straight lines. We first prove the following: The intersection of a line with $A(P)$ is a bounded segment (possibly empty), except for a line parallel to the axis of symmetry.

By translating and applying a linear transformation (they send parabolas to parabolas and lines to lines) we can assume without loss of generality that the parabola is $y=x^{2}$ and the line is $y=m x+b$, then the points of intersection are solutions of $x^{2}-m x-b=0$, and we have three cases: i) No solutions, so the segment $A(P) \cap$ line is empty. ii) One solution, so $m^{2}=-4 b=4 x^{2}$ and the line is tangent to the parabola at $\left(x, x^{2}\right)$, thus the segment is just one point. iii) Two solutions, so the segment is bounded by this two points.

Finally we note that for any finite set of parabolas we can always choose a line non-parallel to the axis of symmetry, hence the parabolas can only cover a bounded region of this line.
4. Prove that for integers $1 \leq k \leq n$ we have

$$
\sum_{j=0}^{k}\binom{n}{j}<\left(\frac{e n}{k}\right)^{k}
$$

Solution. We shall prove inductively on n that for every $1 \leq k \leq n$ the stated inequality holds. For $n=1$ we have

$$
\binom{1}{0}+\binom{1}{1}=2<e
$$

Suppose the assertion holds for n, we prove it for $n+1$. Since $\binom{n+1}{j}=\binom{n}{j}+\binom{n}{j-1}$ for $j \geq 1$, and $\binom{n+1}{j}=\binom{n}{j}$ for $j=0$ we get for $k<n+1$

$$
\sum_{j=0}^{k}\binom{n+1}{j}=\sum_{j=0}^{k}\binom{n}{j}+\sum_{j=0}^{k-1}\binom{n}{j} .
$$

For $k=n+1$ this formula is also true adopting the convention that $\binom{n}{n+1} \equiv 0$. By the inductive assumption we obtain

$$
\begin{aligned}
& \sum_{j=0}^{k}\binom{n+1}{j}<\left(\frac{e n}{k}\right)^{k}+\left(\frac{e n}{k-1}\right)^{k-1} \\
= & \left(\frac{e}{k}\right)^{k}\left(n^{k}+\frac{1}{e}\left(\frac{k}{k-1}\right)^{k-1} k n^{k-1}\right)
\end{aligned}
$$

but $\frac{1}{e}\left(\frac{k}{k-1}\right)^{k-1}=\frac{1}{e}\left(1+\frac{1}{k-1}\right)^{k-1}<\frac{1}{e} \cdot e=1$ and $n^{k}+k n^{k-1} \leq(n+1)^{k}$, so

$$
\sum_{j=0}^{k}\binom{n+1}{j}<\left(\frac{e(n+1)}{k}\right)^{k}
$$

Solution. [A. Gerasimovics] Observe that for $0<$ $x \leq 1$ we have

$$
\begin{aligned}
\sum_{j=0}^{k}\binom{n}{j} & \leq \sum_{j=0}^{k}\binom{n}{j} x^{j-k} \leq \sum_{j=0}^{n}\binom{n}{j} x^{j-k} \\
& =x^{-k}(1+x)^{n}
\end{aligned}
$$

Setting $x=k / n$ and estimating $1+k / n$ by $e^{k / n}$ yields the desired inequality.
Remark. If we optimize over x we can prove a stronger result saying that

$$
\sum_{j=0}^{\theta n}\binom{n}{j}<2^{n H(\theta)}, \quad \theta \in(0,1 / 2)
$$

where

$$
H(\theta)=-\theta \log _{2} \theta-(1-\theta) \log _{2}(1-\theta)
$$

is the entropy function.
5. Using four colours, is it possible to colour the set of nonnegative real numbers (assign to each nonnegative number one of four colours) so that whenever $a+b=2 c+2$ for some $a, b, c \geq 0$, then a, b, c will not be of the same colour?
Solution. Answer: Yes!
We colour $x \geq 0$ with the $k^{\text {th }}$ colour iff $\lfloor x\rfloor \equiv$ $k(\bmod 4), k=0,1,2,3$.

Suppose that $\frac{a+b}{2}=c+1$ for some nonnegative numbers a, b, c and let us say $a \leq b$. Suppose that a, b are of the same colour and let $a \in[k, k+1)$, i.e. $\lfloor a\rfloor=k$, for some integer $k \geq 0$. Then $b \in$ $[k+4 l, k+4 l+1)$ for some integer $l \geq 0$. Thus $(a+b) / 2 \in[k+2 l, k+2 l+1)$, hence $\lfloor c\rfloor=k+2 l-1$. Since $2 l \bmod 4=0$ lub 2 , the colour of c differs from the colour of a by one.

