Problem solving seminar
 IMC Preparation Set I

Instructions

1. Work independently.
2. Do not use any books, notes, nor calculators.
3. Please write down your solutions for each problem on individual sheets
4. Please submit your work via pigeonholes opposite room B1.38 or email (Problems $1,2 \& 3$ to RT, $3 \& 4$ to TT) by Friday, 25 April, 11:59pm

Good luck!
Rosemberg Toala \& Tomasz Tkocz

Problems

1. Let A be a $n \times n$ matrix such that $A u$ is orthogonal to u for every vector $u \in \mathbb{R}^{n}$. Prove that
a) A is skew-symmetric, i.e., $A^{t}=-A$.
b) If n is odd, show that there exists $v \in \mathbb{R}^{n}$ such that $A v=0$.
2. Consider 2014 points in general position (no three collinear) on the plane, and all the segments joining any two of them. Show that one of the following conditions always hold:
(i) It is possible to reach a point from any other by only using segments with rational length.
(ii) It is possible to reach a point from any other by only using segments with irrational length.
3. Any parabola P divides the plane into a convex region $A(P)$ and a non-convex $B(P)$. Is it possible to find a positive integer n and parabolas $P_{1}, P_{2}, \ldots, P_{n}$ such that $A\left(P_{1}\right), A\left(P_{2}\right), \ldots, A\left(P_{n}\right)$ cover the whole plane?
4. Prove that for integers $1 \leq k \leq n$ we have

$$
\sum_{j=0}^{k}\binom{n}{j}<\left(\frac{e n}{k}\right)^{k}
$$

5. Using four colours, is it possible to colour the set of nonnegative real numbers (assign to each nonnegative number one of four colours) so that whenever $a+b=2 c+2$ for some $a, b, c \geq 0$, then a, b, c will not be of the same colour?
