Problem solving seminar
 Homework II - Solutions

1. Given $\alpha>0$ find inf and sup of $\int_{0}^{1} x f(x) \mathrm{d} x$ subject to integrable functions $f:[0,1] \longrightarrow[0, \infty)$ with $\int_{0}^{1} f(x) \mathrm{d} x=\alpha$.
Solution. Obviously $\int_{0}^{1} x f(x) \mathrm{d} x \geq 0$ and $\int_{0}^{1} x f(x) \mathrm{d} x \leq \int_{0}^{1} f(x) \mathrm{d} x=\alpha$ for any integrable $f:[0,1] \longrightarrow[0, \infty)$ with $\int_{0}^{1} f(x) \mathrm{d} x=\alpha$.

Functions $f_{\epsilon}(x)=\frac{\alpha}{\epsilon} \mathbf{1}_{[0, \epsilon]}(x), g_{\epsilon}(x)=\frac{\alpha}{\epsilon} \mathbf{1}_{[1-\epsilon, 1]}(x)$ with $\epsilon \rightarrow 0$ show that the inf and the sup are respectively equal to 0 and α.
2. Let $\phi:[0, \infty) \longrightarrow \mathbb{R}$ be a convex function and $\phi(0)=0, \phi(x) \xrightarrow[x \rightarrow+\infty]{ }+\infty$. Prove that for every integer $n \geq 0$,

$$
\int_{0}^{\infty} t^{n} e^{-\phi(t)} \mathrm{d} t \leq n!\left(\int_{0}^{\infty} e^{-\phi(t)} \mathrm{d} t\right)^{n+1}
$$

Solution. Define $\alpha>0$ by $1 / \alpha=\int_{0}^{\infty} e^{-\alpha t} \mathrm{~d} t=\int_{0}^{\infty} e^{-\phi(t)} \mathrm{d} t$. Then, as in the class, we show that the function

$$
h(t)=\int_{t}^{\infty}\left(e^{-\alpha s}-e^{-\phi(s)}\right) \mathrm{d} s, \quad t \geq 0
$$

is nonnegative (briefly, $h(0)=0, h(\infty)=0, h^{\prime}$ changes sign (positive then negative), so h increases and then decreases, consequently $h \geq 0$). To finish the proof it is enough to integrate by parts

$$
\begin{aligned}
\int_{0}^{\infty} t^{n} e^{-\phi(t)} & =\int_{0}^{\infty}\left(n \int_{0}^{t} s^{n-1}\right) e^{-\phi(t)}=\int_{0}^{\infty} n s^{n-1}\left(\int_{s}^{\infty} e^{-\phi(t)}\right) \\
& \leq \int_{0}^{\infty} n s^{n-1}\left(\int_{s}^{\infty} e^{-\alpha t)}\right)=\int_{0}^{\infty} s^{n} e^{-\alpha s}=\frac{1}{\alpha^{n+1}} \int_{0}^{\infty} s^{n} e^{-s} \\
& =\frac{n!}{\alpha^{n+1}}
\end{aligned}
$$

3. Let $f:[0,1] \longrightarrow[0, \infty)$ be a nonincreasing concave function such that $f(0)=1$. Prove that for every integer $n \geq 3$,

$$
\frac{n-1}{n}\left(\int_{0}^{1} f(x)^{n-2} \mathrm{~d} x\right)^{2} \geq \int_{0}^{1} x f(x)^{n-2} \mathrm{~d} x
$$

Solution. Since f is concave and nonincreasing, we have $1-x \leq f(x) \leq x$ for $x \in[0,1]$. Therefore, there exists a real number $\alpha \in[0,1]$ such that for $g(x)=1-\alpha x$ we have

$$
\int_{0}^{1} f(x)^{n-2} \mathrm{~d} x=\int_{0}^{1} g(x)^{n-2} \mathrm{~d} x .
$$

Clearly, we can find a number $c \in[0,1]$ such that $f(c)=g(c)$. Since f is concave and g is affine, we have $f(x) \geq g(x)$ for $x \in[0, c]$ and $f(x) \leq g(x)$ for $x \in[c, 1]$. Hence,

$$
\begin{aligned}
\int_{0}^{1} x\left(f(x)^{n-2}-g(x)^{n-2}\right) \mathrm{d} x \leq & \int_{0}^{c} c\left(f(x)^{n-2}-g(x)^{n-2}\right) \mathrm{d} x \\
& +\int_{c}^{1} c\left(f(x)^{n-2}-g(x)^{n-2}\right) \mathrm{d} x=0
\end{aligned}
$$

We conclude that it suffices to prove the desired inequality for the function g, which is by simple computation equivalent to

$$
\begin{aligned}
\frac{1}{\alpha^{2} n(n-1)}\left(1-(1-\alpha)^{n-1}\right)^{2} \geq \frac{1}{\alpha^{2}}(& \frac{1}{n-1}\left(1-(1-\alpha)^{n-1}\right) \\
& \left.-\frac{1}{n}\left(1-(1-\alpha)^{n}\right)\right)
\end{aligned}
$$

To finish the proof one has to perform a short calculation and use Bernoulli's inequality.

