Problem solving seminar Homework I

Instructions

1. Work independently.
2. There is no time limit, so do not rush.
3. Do not use any books, notes, nor calculators.
4. Bring your solutions to the class on 22nd January.

Good luck!
Tomasz Tkocz

Problems

1. Let $n \geq 2$ and let x_{1}, \ldots, x_{n} be vectors in \mathbb{R}^{d}. Prove that there exists a subset $I \subset\{1, \ldots, n\}$ such that

$$
4\left(\sum_{i \in I} x_{i}\right) \cdot\left(\sum_{i \notin I} x_{i}\right) \geq \sum_{i \neq j} x_{i} \cdot x_{j}
$$

where \cdot denotes the standard scalar product. We adopt the convention that $\sum_{i \in \varnothing} x_{i}=0$.
2. Given positive numbers t_{1}, \ldots, t_{n} let $a_{i j}=\min \left\{t_{i}, t_{j}\right\}, i, j=1, \ldots, n$. Prove that for every real numbers x_{1}, \ldots, x_{n} we have

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \geq 0
$$

3. Let $r \in(0,1)$ and denote $C_{r}=(1+r) /(1-r)$. Prove that for any real numbers x_{0}, \ldots, x_{n} which are not all equal to zero

$$
C_{r}^{-1} \sum_{k=0}^{n} x_{k}^{2}<\sum_{0 \leq k, l \leq n} x_{k} x_{l} r^{|k-l|}<C_{r} \sum_{k=0}^{n} x_{k}^{2} .
$$

