Problem solving seminar

Tomasz Tkocz

Inequalities I

Warm-up

1. Let $0<a<b$. Prove that

$$
\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} \geq e^{-a^{2}}-e^{-b^{2}}
$$

Averaging

2. Given 2014 points P_{1}, \ldots, P_{2014} in the unit disk D on the plane, prove that there exists a point $P \in D$ such that

$$
\sum_{i=1}^{2014}\left|P P_{i}\right| \geq 2014 .
$$

3. Let $n \geq 2$ and let $A=\left[a_{i j}\right]_{i, j=1}^{n}$ be a real matrix with $a_{i i}=0, i=1, \ldots, n$. Prove that there is a subset $I \subset\{1, \ldots, n\}$ such that

$$
\sum_{i \in I, j \notin I} a_{i j}+\sum_{i \notin I, j \in I} a_{i j} \geq \frac{1}{2} \sum_{i \neq j} a_{i j} .
$$

Integrals

4. Let $\left\{D_{1}, \ldots, D_{n}\right\}$ be a family of disks on the plane and let $a_{i j}=\left|D_{i} \cap D_{j}\right|$ be the surface area of the intersection $D_{i} \cap D_{j}$ for $i, j=1, \ldots, n$. Prove that for every real numbers x_{1}, \ldots, x_{n},

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \geq 0 .
$$

5 (\dagger). Let a, b, c, x, y, z, q be positive numbers and $1 \leq x, y, z \leq 4$. Show that

$$
\frac{x}{(2 a)^{q}}+\frac{y}{(2 b)^{q}}+\frac{z}{(2 c)^{q}} \geq \frac{y+z-x}{(b+c)^{q}}+\frac{z+x-y}{(c+a)^{q}}+\frac{x+y-z}{(a+b)^{q}} .
$$

Weights

$6(\dagger)$. Prove that for positive numbers a_{1}, a_{2}, \ldots such that $\sum_{i=1}^{\infty} a_{i}<\infty$ we have

$$
\sum_{n=1}^{\infty}\left(a_{1} \cdot \ldots \cdot a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} \quad \text { (Carleman's inequality). }
$$

Remark. \dagger questions may be slightly harder.

