Problem solving seminar

Tomasz Tkocz

Linear ALgEbrA'

Remark. $M_{n \times n}(\mathbb{R})$ denotes the set of all $n \times n$ real matrices. I is the identity matrix.
Question 1. Let $S \in M_{n \times n}(\mathbb{R})$ be a skew symmetric matrix, i.e. $S^{T}=-S$. Prove that
(a) eigenvalues of S are purely imaginary, and go in pairs $\lambda, \bar{\lambda}$
(b) S is diagonalizable in an orthonormal basis, i.e. there exists an orthogonal matrix T such that $T S T^{T}$ is diagonal.

Question 2. Let $A \in M_{n \times n}(\mathbb{R})$ satisfy $A+A^{T}=I$. Prove that $\operatorname{det} A>0$.
Question 3. Let V a finite-dimensional vector space and let $f: V \longrightarrow V$ be a linear map such that $f \circ f=f$. Prove that f is diagonalizable with eigenvalues 0,1 .

Question 4. Let V a finite-dimensional vector space and let $f_{1}, \ldots, f_{m}: V \longrightarrow V$ be linear maps which commute and are diagonalizable. Prove that they are simultaneously diagonalizable.

Question 5. Let V a finite-dimensional vector space. A linear map $f: V \longrightarrow V$ is called an involution if $f \circ f=\mathrm{id}$.
(a) Prove that every involution is diagonalizable
(b) Find the maximal number of distinct commuting involutions on V in terms of $n:=\operatorname{dim} V$.

Question 6. Let $A, B \in M_{n \times n}(\mathbb{R})$ be such that $A B-B A=\alpha A$ for some $\alpha \neq 0$. Prove that
(a) $A^{k} B-B A^{k}=\alpha k A^{k}$
(b) $A^{m}=0$ for some $m>0$.

Question 7. (a) Show that for every n there exists $A \in M_{n \times n}(\mathbb{R})$ such that $A^{3}=A+I$
(b) Show that $\operatorname{det} A>0$ for every $A \in M_{n \times n}(\mathbb{R})$ satisfying $A^{3}=A+I$.

Question 8. Given $A, B \in M_{n \times n}(\mathbb{R})$ such that $\operatorname{rank}(A B-B A)=1$ prove that $(A B-B A)^{2}=0$.
Question 9. Prove that for an $n \times n$ complex matrix A there exist a unitary matrix U such that $U A U^{*}$ is upper-triangular.

Question 10. Let $X \in M_{n \times n}(\mathbb{R})$. Prove that $\operatorname{tr} X^{2} \leq \operatorname{tr} X X^{T}$.
Question $11(\dagger)$. Prove that for an $n \times n$ complex matrix A and a positive integer m we have

$$
\left|\operatorname{tr} A^{2 m}\right| \leq \operatorname{tr}\left(A A^{*}\right)^{m} .
$$

Question 12. Let $A, B \in M_{n \times n}(\mathbb{R})$ be symmetric. Prove that $\operatorname{tr} A B A B \leq \operatorname{tr} A^{2} B^{2}$.
Question 13. Let $A \in M_{n \times n}(\mathbb{R})$ be symmetric and positive definite. Prove that $\operatorname{det}(I+A) \geq$ $1+\operatorname{det} A$.

Remark. \dagger questions may be slightly harder.

