## Problem solving seminar

Tomasz Tkocz

## LINEAR ALGEBRA

Remark. $M_{n \times n}(\mathbb{R})$ denotes the set of all $n \times n$ real matrices. $I$ is the identity matrix.
Question 1. Let $A, B \in M_{n \times n}(\mathbb{R})$ satisfy $A B-B A=A$. Prove that $\operatorname{det} A=0$.
Question 2. Let $A, B \in M_{2 \times 2}(\mathbb{R})$ be such that for some positive integer $n$ we have $(A B-B A)^{n}=I$. Prove that
(a) $n$ is even,
(b) $(A B-B A)^{4}=I$.

Definition. An $n \times n$ matrix $A$ is called nilpotent if $A^{m}=0$ for some positive integer $m$.
Question 3. Prove that if $A \in M_{n \times n}(\mathbb{R})$ is nilpotent, then $A^{n}=0$.
Question 4. Let $A, B \in M_{n \times n}(\mathbb{R})$ be such that the matrices

$$
A+t_{1} B, A+t_{2} B, \ldots, A+t_{n+1} B
$$

are nilpotent, where $t_{1}, \ldots, t_{n+1}$ are some distinct real numbers. Prove that $A$ and $B$ are also nilpotent.

Question $5(\dagger)$. Prove that $A \in M_{n \times n}(\mathbb{R})$ is nilpotent if and only if $\operatorname{tr} A^{k}=0$ for $k=1, \ldots, n$.
Question 6. Given matrices $A, B \in M_{n \times n}(\mathbb{R})$ prove that
(a) $\operatorname{rank} A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$,
(b) $\operatorname{rank} A B \geq \operatorname{rank} A+\operatorname{rank} B-n$.

Question 7. Let $A_{1}, \ldots, A_{k} \in M_{n \times n}(\mathbb{R})$ be rank $n-1$ matrices. Prove that $k<n$ implies

$$
A_{1} \cdot \ldots \cdot A_{k} \neq 0
$$

Question 8. Let $A, B \in M_{n \times n}(\mathbb{R})$ satisfy $A B-B A=\alpha A$ for some real number $\alpha$. Prove that
(a) $A^{k} B-B A^{k}=\alpha k A^{k}$ for $k \geq 1$,
(b) $A$ is nilpotent.

Question 9. There are $n$ people sitting at the round table. Each person has got a sticky note on which a prime is written down. Every minute a certain person modifies her or his number by multiplying it by a number of a neighbour. Is it possible that at some point there are two people who have got the same number?

Remark. $\dagger$ questions may be slightly harder.

