Extra questions for first year maths students, Term 2 2012/2013

Tomasz Tkocz

Question 1. Prove that for a natural number $n \geq 1$ we have

$$
\frac{e}{2 n+2}<e-\left(1+\frac{1}{n}\right)^{n}<\frac{e}{2 n+1}
$$

Conclude that

$$
\left(\frac{(1+1 / n)^{n}}{e}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 1 / \sqrt{e}
$$

Question 2. Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying for all reals $x \neq y$

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}\left(\frac{x+y}{2}\right) .
$$

What is the geometric interpretation of this equation? Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be bounded below, say $f(x), g(x) \geq 0$ for all $x \in \mathbb{R}$. Suppose that $|g(x)-g(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Prove that the function $f \square g$ defined by

$$
(f \square g)(x)=\inf _{t \in \mathbb{R}}\{f(x)+g(x-t)\} .
$$

is continuous.
Question 3. Given distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots$ prove that in the linear space $V=\{f: \mathbb{R} \longrightarrow \mathbb{R}\}$ of all real valued functions on \mathbb{R} the following sets of functions are linearly independent
(a) $\left\{e^{\lambda_{1} x}, e^{\lambda_{2} x}, e^{\lambda_{3} x}\right\}$
(b) $\left\{e^{\lambda_{n} x}\right\}_{n=1,2, \ldots}$

Remark. A subset (possibly infinite) $A \subset V$ of a linear space V is called linearly independent if for any for any finite subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset A$ the vectors v_{1}, \ldots, v_{n} are linearly independent.

Question 4. Let V be a real n dimensional vector space. For a linear map $f: V \longrightarrow V$ satisfying $f \circ f=\mathrm{id}$ prove that $\operatorname{rank}(f+\mathrm{id})+\operatorname{rank}(f-\mathrm{id})=n$.

Question 5. Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying for all reals $x \neq y$

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}\left(\frac{x+y}{2}\right) .
$$

What is the geometric interpretation of this equation?
Question 6. Let V be an n dimensional vector space and let $S, T: V \longrightarrow V$ be linear maps. Prove that

$$
\operatorname{rank} T S \geq \operatorname{rank} T+\operatorname{rank} S-n
$$

Question 7. Does there exist a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)= \begin{cases}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{cases}
$$

Question 8. Let V be a real vector space, let $\varphi: V \longrightarrow V$ be a linear map, and let $v_{1}, \ldots, v_{k} \in V$ be non-zero distinct vectors such that $\varphi\left(v_{1}\right)=v_{1}, \varphi\left(v_{i}\right)=v_{i}+v_{i-1}$ for $i=2, \ldots, k$. Prove that $v_{i}^{\prime} s$ are linearly independent.

Question 9. Prove that

$$
\operatorname{det}\left[\begin{array}{cccc}
1233 & 3046 & 5098 & 347 \\
2013 & 4327 & 5832 & 8743 \\
496 & 5439 & 1205 & 9731 \\
7655 & 7095 & 2341 & 5402
\end{array}\right] \neq 0
$$

Question 10. Given $n \geq 3$ and real numbers t_{1}, \ldots, t_{n} prove that

$$
\operatorname{det}\left[\cos \left(t_{i}-t_{j}\right)\right]_{i, j=1}^{n}=0 .
$$

