Extra questions for first year maths students, Term 1 2012/2013
Tomasz Tkocz
Question 1. Prove that for any real number x the following inequality holds

$$
|x+1|+|x+2|+\ldots+|x+2012| \geq 1006^{2} .
$$

When does the equality hold?
Question 2. Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying for all $x \in \mathbb{R}$ the following inequality

$$
f^{\prime}(x) \geq f(x) .
$$

Question 3. Let φ be Euler's totien function, i.e. for a positive integer n we define $\varphi(n)$ to be the number of positive integers less than or equal to n that are relatively prime to n. Prove that for any positive integer n

$$
\sum_{d \mid n} \varphi(d)=n,
$$

where the sum is over all positive divisors of n.
Question 4. Examine the convergence of the sequence

$$
a_{n}=\sum_{k=1}^{n} \frac{k}{n^{2}+k}=\frac{1}{n^{2}+1}+\frac{2}{n^{2}+2}+\ldots \frac{n}{n^{2}+n} .
$$

Question 5. Given an irrational number α prove that the set $\{\{k \alpha\}: k \in \mathbb{Z}\}$ is a dense subset of the interval $[0,1]$, i.e. prove that for any numbers $0<a<b<1$ there exists an integer k such that $\{k \alpha\} \in(a, b)$.
Remark. The fractional part, denoted by $\{x\}$ for real x, is defined by the formula

$$
\{x\}=x-\lfloor x\rfloor,
$$

where $\lfloor\cdot\rfloor$ denotes the usual floor function.
Question 6. Given a parameter $\beta \in(0,1)$ prove that

$$
\prod_{k=2}^{n}\left(1-\frac{\beta}{k}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

Question 7. Let $u:(0,1) \longrightarrow \mathbb{R}$ be a differentiable function which satisfies

$$
u^{\prime}(t) \leq c u(t), \quad \text { for all } t \in(0,1)
$$

where c is some constant. Prove that

$$
u(t) \leq u(0) e^{c t}, \quad \text { for all } t \in(0,1)
$$

Question 8. Find all integers a, b and c satisfying the equation

$$
a^{2012}+b^{2012}-8 c^{1006}=6 .
$$

Question 9. Does there exist a non-abelian group with less than 6 elements?
Question 10. Does the series $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)^{n}$ converge?

