Analysis II, Term 2 2012/2013
Tomasz Tkocz

SUPport class 1

A few baby inequalities

Question 1. Prove that for real numbers x_{1}, \ldots, x_{n} we have

$$
\left|x_{1}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\ldots+\left|x_{n}\right| .
$$

Question 2. Given a natural number $n \geq 1$ find minimum value of $\sum_{i=1}^{n} \sqrt{a_{i}^{2}+(2 i-1)^{2}}$ subject to positive numbers a_{i} satisfying $\sum_{i=1}^{n} a_{i}=n^{2}$.

Question 3. Prove that for $x \geq 1$ and $h>0$ we have

$$
\sqrt{x+h}-\sqrt{x} \leq h / 2
$$

Does this hold for all $x>0$?
Question 4. Prove that for positive numbers x_{1}, \ldots, x_{n} the arithmetic mean is greater or equal that the geometric mean,

$$
\sqrt[n]{x_{1} \cdot \ldots \cdot x_{n}} \leq \frac{x_{1}+\ldots+x_{n}}{n}
$$

Question 5. Prove that for numbers $x_{1}, \ldots, x_{n}>-1$ that have the same sign we have

$$
\left(1+x_{1}\right) \cdot \ldots \cdot\left(1+x_{n}\right) \geq 1+x_{1} \ldots+x_{n} .
$$

Question 6 (Bernoulli's inequality). Prove that for a real number $x>-1$ and a natural number $n \geq 1$ we have

$$
(1+x)^{n} \geq 1+n x .
$$

Question 7 (The Cauchy-Schwarz inequality). Prove that for real numbers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ we have

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}
$$

Question 8 (Hölder's inequality). Prove that for real numbers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and $p, q \geq 1$ which satisfy $1 / p+1 / q=1$ we have

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

Question 9. Prove that for $x \in(0, \pi / 2)$ we have

$$
\sin x<x<\tan x
$$

Question 10. Prove that for $x \in \mathbb{R}$ we have

$$
1+x \leq e^{x}
$$

Question 11. Prove that for $x>0$ we have

$$
\frac{x}{x+1} \leq \ln (1+x) \leq x
$$

A FEW EStimates involving factorials

Question 12. Prove that

$$
\left(\frac{n}{e}\right)^{n} \leq n!\leq 3 \frac{n^{n+1}}{e^{n}}
$$

Conclude that $\sqrt[n]{n!} / n \longrightarrow 1 / e$.
Question 13. Prove that

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Question 14. Prove that

$$
\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k}
$$

Question 15. Prove that

$$
\frac{4^{n}}{2 \sqrt{n}} \leq\binom{ 2 n}{n} \leq 4^{n}
$$

Question 16. Give a natural number $n \geq 1$ prove that the sequence $a_{k}=\binom{n}{k}$ is \log-concave, i.e. $a_{k}^{2} \geq a_{k-1} a_{k+1}$ for $k=2, \ldots, n-1$.

Question 17 (\dagger). Prove that for a natural number $n \geq 1$ we have

$$
\frac{e}{2 n+2}<e-\left(1+\frac{1}{n}\right)^{n}<\frac{e}{2 n+1} .
$$

Conclude that

$$
\left(\frac{(1+1 / n)^{n}}{e}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 1 / \sqrt{e}
$$

Analysis II, Term 2 2012/2013

Tomasz Tkocz

SUPPORT CLASS 2

Question $1(\Upsilon)$. Let $f(x)=\sum_{k=-2013}^{2013}|x-k|$. Given $c \in \mathbb{R}$ and $\epsilon>0$ find $\delta>0$ such that

$$
\forall x \in \mathbb{R} \quad|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\epsilon .
$$

Hint: You may want to prove that for all $x, y \in \mathbb{R}$

$$
|f(x)-f(y)| \leq 4027|x-y| .
$$

Question $2(\Upsilon)$. Find all $a \in \mathbb{R}$ such that the function $f_{a}: \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$
f_{a}(x)=\left\{\begin{array}{ll}
\min \{1 /|x|, a\}, & x \neq 0 \\
a^{2}-1, & x=0
\end{array} .\right.
$$

is continuous.
Question $3(\Omega)$. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous functions. Prove that the functions $M(x)=$ $\max \{f(x), g(x)\}, m(x)=\min \{f(x), g(x)\}$ are also continuous.

Question 4 (() . Suppose that for some $c \in \mathbb{R}$ a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the following property

$$
\forall\left(x_{n}\right)_{n=1}^{\infty} \quad x_{n} \rightarrow c \Longrightarrow f\left(x_{n}\right) \rightarrow f(c)
$$

Prove that f is continuous at c.
Remark. Cf. Exercise 6 from Assignment 1.
Question 5 (内). Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be bounded below, say $f(x), g(x) \geq 0$ for all $x \in \mathbb{R}$. Suppose that $|g(x)-g(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Prove that the function $f \square g$ defined by

$$
(f \square g)(x)=\inf _{t \in \mathbb{R}}\{f(x)+g(x-t)\} .
$$

is continuous.

Analysis II, Term 2 2012/2013

Support class 3

Question $1(\bigcirc)$. Let $f:[0,+\infty) \longrightarrow[0,+\infty)$ satisfy for all $x, y \geq 0$

$$
|f(x)-f(y)| \leq q|x-y|
$$

with some constant $q \in(0,1)$. Fix $x_{0} \geq 0$ and define recursively the sequence $\left(x_{n}\right)_{n \geq 0}$ by $x_{n+1}=$ $f\left(x_{n}\right), n \geq 0$. Prove that it converges. What can be said about the limit?

Question $2(Q)$. Let $f(x)=\sqrt{1+x}$ for $x \geq 0$. Prove that for any $x_{0} \geq 0$ the sequence $\left(x_{n}\right)_{n \geq 0}$ defined recursively by $x_{n+1}=f\left(x_{n}\right)$ for $n \geq 0$ converges and compute the limit.

Question 3 ($($). Define the function

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ |\sin x| & \text { if } x \notin \mathbb{Q} .\end{cases}
$$

At which points is f continuous?
Definition. We say that a function $f:(A, B) \longrightarrow \mathbb{R}$ possesses the Intermediate Value Property if for any $a<b$ in the domain such that $f(a) \neq f(b)$, and any z between $f(a)$ and $f(b)$ there is some $c \in(a, b)$ between a and b with $f(c)=z$.

Question $4(\boldsymbol{\wedge})$. Give an example of a function which is not continuous, and yet has got the Intermediate Value Property.

Question $5(\Omega)$. Prove that the equation $(1-x) \cos x=\sin x$ has a solution in the interval $(0,1)$.
Question 6 ($($). Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a T - periodic continuous function, i.e. $f(x+T)=f(x)$ for all $x \in \mathbb{R}$, where $T>0$ is the period. Prove that there exists x_{0} such that

$$
f\left(x_{0}+T / 2\right)=f\left(x_{0}\right) .
$$

Question $7(\odot / \boldsymbol{\phi})$. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be additive, i.e. satisfy for all $x, y \in \mathbb{R}$ Cauchy's functional equation

$$
f(x+y)=f(x)+f(y) .
$$

Prove that
(a) $f(0)=0$
(b) $f(-x)=f(x)$
(c) For any $x_{1}, \ldots, x_{n} \in \mathbb{R}$ we have $f\left(x_{1}+\ldots+x_{n}\right)=f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)$
(d) For an integer k and a real number x we have $f(k x)=k f(x)$
(e) For a rational number q we have $f(q)=q f(1)$
(f) In addition, if f satisfies one of these assumptions:
(i) f is continuous
(ii) f is continuous at one point
(iii) f is monotone
(iv) f is bounded above/below
then $f(x)=x f(1)$ for all $x \in \mathbb{R}$.

Analysis II, Term 2 2012/2013

Tomasz Tkocz

SUPport CLASS 4

Question $1(\Omega / \boldsymbol{\uparrow})$. Compute the following limit (if it exists)
(a) $\lim _{x \rightarrow 0} x \cos \frac{1}{x}$
(b) $\lim _{x \rightarrow+\infty} x\left(\sqrt{x^{2}+1}-\sqrt[3]{x^{3}+1}\right)$
(c) $\lim _{x \rightarrow 0} \frac{\cos \left(\frac{\pi}{2} \cos x\right)}{\sin (\sin x)}$.

Question 2 ($($). Prove that for any $x \in \mathbb{R}$ we have $x-1<\lfloor x\rfloor \leq x$.
Question 3 ($($). Compute the following limit (if it exists)
(a) $\lim _{x \rightarrow 0} x\left\lfloor\frac{1}{x}\right\rfloor$
(b) $\lim _{x \rightarrow 0} \frac{\lfloor x\rfloor}{x}$.
(c) $\lim _{x \rightarrow 0} x^{2}\left(1+2+\ldots+\left\lfloor\frac{1}{|x|}\right\rfloor\right)$.

Question 4 ($\boldsymbol{\oplus})$. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function such that $\lim _{x \rightarrow \infty} \frac{f(2 x)}{f(x)}=1$. Prove that $\lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}=1$ for every $c>0$.

Question $5(\star)$. Let $f:[0, \infty) \longrightarrow \mathbb{R}$ possess the property: for every $a \geq 0$ the limit $\lim _{n \rightarrow \infty} f(a+n)$ exists and equals 0 . Does it imply that the $\operatorname{limit}^{\lim }{ }_{x \rightarrow \infty} f(x)$ exists?

Analysis II, Term 2 2012/2013

Tomasz Tkocz

Support class 5

Question 1 (() . Prove that
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty, n \geq 0$
(b) $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0, n \geq 0$
(c) $\lim _{x \rightarrow 0+} x^{p} \ln x=0, p \in(0,1)$
(d) $\lim _{x \rightarrow \infty} \frac{\ln ^{n} x}{x}=0, n \geq 0$.

Question $2(\boldsymbol{\oplus})$. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be given by the formula

$$
f(x)=\left\{\begin{array}{ll}
e^{-1 / x^{2}}, & x>0 \\
0, & x \leq 0
\end{array} .\right.
$$

Is f differentiable? What can you say about the second derivative? About the higer order derivatives?
Question $3(\Upsilon)$. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function with $\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|=L<\infty$. Prove that f is L-Lipschitz, i.e.

$$
|f(x)-f(y)| \leq L|x-y|, \quad \text { for all reals } x, y
$$

Question $4(\star)$. Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying for all reals $x \neq y$

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}\left(\frac{x+y}{2}\right) .
$$

What is the geometric interpretation of this equation?

Analysis II, Term 2 2012/2013

Tomasz Tkocz

Support class 6

Question $1(\boldsymbol{\oplus})$. Let $f:(a, b) \longrightarrow \mathbb{R}$ be differentiable. Prove that f^{\prime} possesses the intermediate value property.

Question $2(\boldsymbol{\oplus})$. Does there exist a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)= \begin{cases}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{cases}
$$

Question $3(\Omega)$. Suppose that $f(0)=0$ and that $f^{\prime}(0)$ exists. Given a positive integer k compute

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left(f(x)+f\left(\frac{x}{2}\right)+\ldots+f\left(\frac{x}{k}\right)\right) .
$$

Question $4(\boldsymbol{\oplus})$. Let $f(x)=a_{1} \sin x+a_{2} \sin (2 x)+\ldots+a_{n} \sin (n x)$, where $a_{1}, a_{2}, \ldots, a_{n}$ are reals. Prove that if $|f(x)| \leq|\sin x|$ for every $x \in \mathbb{R}$ then $\left|a_{1}+2 a_{2}+\ldots+n a_{n}\right| \leq 1$.

Analysis II, Term 2 2012/2013

SUPport class 7

Question $1(\bigcirc)$. Prove that if $|x|<1 / 2$ then the approximate formula

$$
\sqrt{1+x} \approx 1+\frac{1}{2} x-\frac{1}{8} x^{2}
$$

gives the value of $\sqrt{1+x}$ with the error at most $\frac{1}{2}|x|^{3}$.
Observe that $\sqrt{1+1 / 8}=\frac{3 \sqrt{2}}{4}$ and find an approximate value of $\sqrt{2}$. What is the error?
Question 2 (Bernoulli's inequality in full glory \bigcirc). Let $x>-1, x \neq 0$. Prove that
(a) $(1+x)^{\alpha}>1+\alpha x$, if $\alpha>1$ or $\alpha<0$
(b) $(1+x)^{\alpha}<1+\alpha x$, if $0<\alpha<1$.

Question $3(\bigcirc)$. Prove that if $f^{\prime \prime}(x)$ exists then

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}} .
$$

Question $4(\boldsymbol{\oplus})$. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable and

$$
M_{k}=\sup \left\{\left|f^{(k)}(x)\right| ; x \in \mathbb{R}\right\}<\infty, \quad k=0,1,2 .
$$

Prove that

$$
M_{1} \leq \sqrt{2 M_{0} M_{2}}
$$

Question 5 (\odot). Find

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2} / 2}-1}{\cosh x-1}
$$

Question 6 ($\boldsymbol{\oplus}$). Prove that
(a) $\cosh x \leq e^{x^{2} / 2}$ for $x \in \mathbb{R}$
(b) $\cos x \leq e^{-x^{2} / 2}$ for $x \in[0, \pi / 2]$.

Analysis II, Term 2 2012/2013
Tomasz Tkocz

Support class 8

Question $1(\rho / \boldsymbol{\phi})$. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\ln (1+e x)}{x}$.
(b) $\lim _{x \rightarrow 1} \frac{\arctan \left(\frac{x^{2}-1}{x^{2}+1}\right)}{x-1}$.
(c) $\lim _{x \rightarrow \infty} x\left(\left(1+\frac{1}{x}\right)^{x}-e\right)$.
(d) $\lim _{x \rightarrow 0+}\left(\frac{\sin x}{x}\right)^{1 / x}$.
(e) $\lim _{x \rightarrow 0+}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$.

Question $2(\Omega)$. Determine the interval of convergence for the series
(a) $\sum_{n=1}^{\infty} 2^{n^{2}} x^{n!}$.
(b) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{(-1)^{n} n^{2}} x^{n}$.

Question $3(\bigcirc)$. Recall the definition of $\lim _{n \rightarrow \infty} a_{n}$ and $\varlimsup_{n \rightarrow \infty} a_{n}$. Prove that
(a) if $a_{n} \leq b_{n}$ eventually, then $\varlimsup a_{n} \leq \varlimsup b_{n}$.
(b) $\overline{\lim }\left(a_{n}+b_{n}\right) \leq \overline{\lim } a_{n}+\overline{\lim } b_{n}$.
(c) $\varlimsup\left|a_{n} b_{n}\right| \leq \varlimsup\left|a_{n}\right| \cdot \varlimsup\left|b_{n}\right|$. Show that the inequality can be strict.
(d) $\underline{\lim \min \left\{a_{n}, b_{n}\right\}=\min \left\{\underline{\lim } a_{n}, \underline{\lim } b_{n}\right\} \text {. } . \text {. }}$

Question $4(\boldsymbol{\oplus})$. Suppose that $f:(-1,1) \longrightarrow \mathbb{R}$ is a function of class C^{2} such that $f(0)=0$. Compute

$$
\lim _{x \rightarrow 0+} \sum_{k=1}^{\lfloor 1 / \sqrt{x}\rfloor} f(k x) .
$$

Analysis II, Term 2 2012/2013

Tomasz Tkocz

SUPport class 9

Question 1 (\bigcirc). Evaluate
(a) $\lim _{x \rightarrow 5}(6-x)^{1 /(x-5)}$.
(b) $\lim _{x \rightarrow \infty} \frac{x-\sin x}{2 x+\sin x}$.

Question $2(\Omega / \boldsymbol{\phi})$. Prove that for $x \in(0, \pi / 2)$ and a positive integer n we have
(a) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+\frac{x^{4 n-3}}{(4 n-3)!}-\frac{x^{4 n-1}}{(4 n-1)!}<\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+\frac{x^{4 n-3}}{(4 n-3)!}-\frac{x^{4 n-1}}{(4 n-1)!}+\frac{x^{4 n+1}}{(4 n+1)!}$.
(b) $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+\frac{x^{4 n-4}}{(4 n-4)!}-\frac{x^{4 n-2}}{(4 n-2)!}<\cos x<1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+\frac{x^{4 n-4}}{(4 n-4)!}-\frac{x^{4 n-2}}{(4 n-2)!}+\frac{x^{4 n}}{(4 n)!}$.

Do these inequalities hold for $x \geq \pi / 2$ as well?
Question 3 (\wp). Prove that $e^{x} \geq 1+x$ for $x \in \mathbb{R}$ and then derive the inequality between means

$$
\frac{x_{1}+\ldots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot \ldots \cdot x_{n}}
$$

Question $4(\bigcirc)$. Prove the inequality
(a) $1-1 / x \leq \ln x \leq x / e$ for $x>0$.
(b) $2 \tan x>\sinh x$ for $x \in(0, \pi / 2)$.

Remark. Combining the inequalities $\cosh x \leq e^{x^{2} / 2}$ and $\cos x \leq e^{-x^{2} / 2}$ (see Support class 7, Question 6), one can actually show $c \tan x>\sinh x$ with $c=1$ which is sharp.

