An Upper Bound for Spherical Caps

Tomasz Tkocz *

September 19, 2011

Abstract

We prove an useful upper bound for the measure of spherical caps.

Consider the uniformly distributed measure σ_{n-1} on the Euclidean unit sphere $S^{n-1} \subset \mathbb{R}^n$. On the sphere, as among only a handful other spaces, the isoperimetric problem is completely solved. This goes back to Lévy [Lé] and Schmidt [Sch] and states that caps have the minimal measure of a boundary among all sets with a fixed mass. For $\varepsilon \in [0,1)$ and $\theta \in S^{n-1}$ the cap $C(\varepsilon, \theta)$, or shortly $C(\varepsilon)$, is a set of points $x \in S^{n-1}$ for which $x \cdot \theta \geq \varepsilon$, where \cdot stands for the standard scalar product in \mathbb{R}^n. See figure 1.

A few striking properties of the high-dimensional sphere are presented in [Ba, Lecture 1, 8]. In such considerations, we often need a good estimation of the measure of a cap. Following the method used in [Ba, Lemma 2.2], we extend its proof to the skipped case of large ε and get in an elementary way the desired bound.

Theorem. For any $\varepsilon \in [0,1)$

$$\sigma_{n-1} (C(\varepsilon)) \leq e^{-n\varepsilon^2/2}.$$

Proof. In the case of small ε, for convenience, we repeat a beautiful argument used by Ball. Namely, for $\varepsilon \in [0,1/\sqrt{2}]$ we have (see Figure 2)

$$\sigma_{n-1} (C(\varepsilon)) = \frac{\text{vol}_n (\text{Cone} \cap B^n(0,1))}{\text{vol}_n (B^n(0,1))} \leq \frac{\text{vol}_n (B^n(P, \sqrt{1-\varepsilon^2}))}{\text{vol}_n (B^n(0,1))} = \sqrt{1-\varepsilon^2} \leq e^{-n\varepsilon^2/2}.$$

For $\varepsilon \in [1/\sqrt{2}, 1)$, it is enough to consider a different auxiliary ball which includes the set Cone $\cap B^n(0,1)$, see Figure 3. We obtain

$$\sigma_{n-1} (C(\varepsilon)) \leq \frac{\text{vol}_n (B^n(Q,r))}{\text{vol}_n (B^n(0,1))} = r^n = \left(\frac{1}{2\varepsilon}\right)^n \leq e^{-n\varepsilon^2/2},$$

where the last inequality follows from the estimate

**Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland.
**t.tkocz@students.mimuw.edu.pl

Figure 1: A cap $C(\varepsilon, \theta)$.

Figure 2: Small ε.

Figure 3: Large ε. By the congruence $\frac{1}{\varepsilon} = \frac{1}{r}$.

1
Due to convexity, this is only to be checked at the boundary of our interval $[1/\sqrt{2}, 1]$, which reduces for both endpoints to the evident inequality $\sqrt{e} < 2$.

Acknowledgements. I would like to thank my friend Piotr Nayar for encouraging me to write this note.

References

