Section 6.1

Exercise 10: Find a unit vector \mathbf{u} in the direction of the given vector

$$\mathbf{w} = \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}.$$

Solution. There are two solutions:

$$\mathbf{u} = \pm \frac{1}{\|\mathbf{w}\|} \mathbf{w} = \pm \frac{1}{\sqrt{36 + 16 + 9}} \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix} = \pm \begin{bmatrix} -6/\sqrt{61} \\ 4/\sqrt{61} \\ -3/\sqrt{61} \end{bmatrix}.$$

Exercise 24: Verify the parallelogram law

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

Solution. Let $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$. We have

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = \sum_{i=1}^n (u_i + v_i)^2 + \sum_{i=1}^n (u_i - v_i)^2 = \sum_{i=1}^n (2u_i^2 + 2v_i^2) = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

(Here we used the simple identity $(a + b)^2 + (a - b)^2 = 2a^2 + 2b^2$ valid for any scalars a, b.)

Section 6.2

Exercise 30: Let U be orthonormal matrix, and construct V by interchanging some of the rows of U. Explain why V is orthonormal.

Solution 1. Let us recall some implications proved in the class. By definition, a matrix U is orthogonal if and only if $U^TU = I$. Since both U and U^T are square matrices, the latter identity is equivalent to $UU^T = I$ by the Invertible Matrix Theorem. But $UU^T = I$ is equivalent to the rows of U being orthonormal.

In summary, U is orthogonal if and only if its rows are orthonormal. The latter property is clearly preserved by any row permutation.

Solution 2 (or rather a hint). Observe that the dot product $\mathbf{x} \cdot \mathbf{y}$ does not change if the entries of \mathbf{x} are permuted in the same way as the entries of $\mathbf{y}.$
Section 6.3

Exercise 7: Let \(W = \text{Span} \{ u_2, u_2 \} \). Write \(y \) as the sum of a vector in \(W \) and a vector orthogonal to \(W \). Here

\[
y = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}.
\]

Solution. The vectors \(u_1 \) and \(u_2 \) are orthogonal to each other. First we compute \(\hat{y} \), the orthogonal projection of \(y \) onto \(W \):

\[
\hat{y} = \frac{1+9-10}{1+9+4} u_1 + \frac{5+3+20}{25+1+16} u_2 = 0 u_1 + \frac{2}{3} u_2 = \begin{bmatrix} 10/3 \\ 2/3 \\ 8/3 \end{bmatrix}.
\]

Let \(v = y - \hat{y} = (\frac{-7}{3}, \frac{7}{3}, \frac{7}{3}) \). Then \(y = \hat{y} + v \) is the required sum.

Exercise 8: Let \(W = \text{Span} \{ u_2, u_2 \} \). Write \(y \) as the sum of a vector in \(W \) and a vector orthogonal to \(W \). Here

\[
y = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}.
\]

Solution. The vectors \(u_1 \) and \(u_2 \) are orthogonal to each other. First we compute \(\hat{y} \), the orthogonal projection of \(y \) onto \(W \):

\[
\hat{y} = \frac{-1+4+3}{1+1+1} u_1 + \frac{1+12-6}{1+9+4} u_2 = 2 u_1 + \frac{1}{2} u_2 = \begin{bmatrix} 3/2 \\ 7/2 \\ 1 \end{bmatrix}.
\]

Let \(v = y - \hat{y} = (\frac{-5}{2}, \frac{1}{2}, 2) \). Then \(y = \hat{y} + v \) is the required sum.

Section 6.4

Exercise 10: Find an orthogonal basis for the column space of

\[
A = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}.
\]
Solution. We apply the Gram-Schmidt process. We let \(v_1 = x_1 \). Also,

\[
v_2 = x_2 - \frac{-6 - 24 - 2 - 4}{1 + 9 + 1 + 1} v_1 = x_2 + 3v_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}.
\]

Finally, we should let

\[
v_3 = x_3 - \frac{-6 + 9 + 6 - 3}{1 + 9 + 1 + 1} v_1 - \frac{18 + 3 + 6 + 3}{9 + 1 + 1 + 1} v_2 = x_3 - \frac{1}{2} v_1 - \frac{5}{2} v_2 = \begin{bmatrix} -1 \\ -1 \\ 3 \\ -1 \end{bmatrix}.
\]

A routine checking shows that the obtained vectors \(v_1, v_2, v_3 \) are indeed orthogonal.

Section 6.5

Exercise 12: Find (a) the orthogonal projection of \(b \) into \(\text{Col} A \) and (b) a least-square solution of \(A x = b \). Here

\[
A = [v_1 \ v_2 \ v_3] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 6 \end{bmatrix}.
\]

Solution. It is easy to check that the columns of \(A \) are orthogonal to each other. (In particular, they are linearly independent.) Hence, we can use the standard formulas for finding the orthogonal projection of \(b \) onto \(\text{Col} A \):

\[
b = \frac{2 + 5 - 6}{1 + 1 + 1} v_1 + \frac{2 + 6 + 6}{1 + 1 + 1} v_2 + \frac{-5 + 6 - 6}{1 + 1 + 1} v_1 = \frac{1}{3} (v_1 + 14v_2 - 5v_3) = \begin{bmatrix} 5 \\ 2 \\ 3 \\ 6 \end{bmatrix}.
\]

This answers (a). Since the columns of \(A \) are linearly independent, the least-square solution \(x \) is unique and we already know the weights, namely \(x(= 1/3, 14/3, -5/3) \).

As an check, one can compute \(b - \hat{b} = (-3, 3, 3, 0) \) and see that it is indeed orthogonal to each \(v_i \).

Section 6.6

Exercise 4: Find the equation \(y = \beta_0 + \beta_1 x \) of the least-squares line that fits best the given data points:

\((2, 3), (3, 2), (5, 1), (6, 0) \).
Solution. We construct the design matrix and the observation vector:

\[
X = \begin{bmatrix}
1 & 2 \\
1 & 3 \\
1 & 5 \\
1 & 6 \\
\end{bmatrix}, \quad
 y = \begin{bmatrix}
3 \\
2 \\
1 \\
0 \\
\end{bmatrix}.
\]

We want to find the least-squares solution to \(X\hat{\beta} = y \). The normal equation is

\[
X^T X \hat{\beta} = X^T y.
\]

We have

\[
X^T X = \begin{bmatrix}
4 & 16 \\
16 & 74 \\
\end{bmatrix}, \quad X^T y = \begin{bmatrix}
6 \\
17 \\
\end{bmatrix}.
\]

It is probably easier to compute first the inverse

\[
(X^T X)^{-1} = \frac{1}{4\cdot 74 - 16^2} \begin{bmatrix}
74 & -16 \\
-16 & 4 \\
\end{bmatrix} = \frac{1}{40} \begin{bmatrix}
74 & -16 \\
-16 & 4 \\
\end{bmatrix} = \frac{1}{20} \begin{bmatrix}
37 & -8 \\
-8 & 2 \\
\end{bmatrix}.
\]

Hence, the least-squares solution is

\[
\hat{\beta} = \frac{1}{20} \begin{bmatrix}
37 & -8 \\
-8 & 2 \\
\end{bmatrix} \begin{bmatrix}
6 \\
17 \\
\end{bmatrix} = \begin{bmatrix}
43/10, -7/10 \\
\end{bmatrix}.
\]

Thus the least-squares line is \(y = 4.3 - 0.7x \). \(\blacksquare \)

Exercise 6: Let \(X \) be the design matrix corresponding to a least-squares fit of a parabola to data \((x_1, y_1), \ldots, (x_n, y_n)\). Suppose that \(x_1, x_2, x_3\) are distinct. Explain why there is only one parabola that fits the data best, in a least-square sense.

Solution. It is enough to prove that the columns of \(X \) are linearly independent, since then \(X^T X \) is invertible and the unique least-squares solution is \((X^T X)^{-1} X^T y \).

Let us remove Row 1 from any other row of \(X \):

\[
X = \begin{bmatrix}
1 & x_1 & x_1^2 \\
1 & x_2 & x_2^2 \\
1 & x_3 & x_3^2 \\
\ldots \\
\end{bmatrix} \sim \begin{bmatrix}
1 & x_1 & x_1^2 \\
0 & x_2 - x_1 & x_2^2 - x_1^2 \\
0 & x_3 - x_1 & x_3^2 - x_1^2 \\
\ldots \\
\end{bmatrix}
\]

Calculations show that the determinant

\[
\begin{vmatrix}
x_2 - x_1 & x_2^2 - x_1^2 \\
x_3 - x_1 & x_3^2 - x_1^2 \\
\end{vmatrix}
= (x_2 - x_1)(x_3 - x_1) - (x_2^2 - x_1^2)(x_3 - x_1) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).
\]

This is non-zero since \(x_1, x_2, x_3\) are distinct by the assumption. Thus this \(2 \times 2\)-matrix is invertible and has 2 pivot columns. This means that if we continue the row reduction of \(X \), then we get 3 pivots. Thus the columns of \(X \) are independent, as required. \(\blacksquare \)
Section 7.1

Exercise 14: Orthogonally diagonalize matrix

\[A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}. \]

Solution. The characteristic equation is \((1 - \lambda)^2 - 25 = 0\). The roots are \(-4\) and \(6\). We have

\[A + 4I = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad A - 6I = \begin{bmatrix} -5 & 5 \\ 5 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}. \]

The corresponding eigenvectors are \(v_1 = (-1,1)\) and \(v_2 = (1,1)\). They are orthogonal as we expected them to be. Let us normalize them, by multiplying each by \(1/\sqrt{2}\). We let

\[
\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad D = \begin{bmatrix} -4 & 0 \\ 0 & 6 \end{bmatrix}.
\]

Since \(P\) is orthogonal, we have \(P^{-1} = P^T\).

\[A = PDP^{-1} = PDP^T \]

is the required orthogonal diagonalization.

Exercise 22: Orthogonally diagonalize matrix \(A\), given that its eigenvalues are \(0\) and \(2\), where

\[A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}. \]

Solution. Let us find the eigenvectors corresponding to the eigenvalue \(\lambda = 0\), which amounts to finding a basis for the \(\text{Nul } A\). We have

\[A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]

We have one free variable \(x_4\), so \(\text{Nul } A\) is 1-dimensional and it spanned by \(v_1 = (0,-1,0,1)\). Let us immediately normalize \(v_1\) by replacing it with \(v_1 = (0,-1/\sqrt{2},0,1/\sqrt{2})\).

For \(\lambda = 2\), we obtain

\[A - 2I = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]
Here \(x_1, x_3, x_4 \) are free; the general solution to \((A - 2I)x = 0\) is
\[
\mathbf{x} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.
\]

Luckily for us, the obtained 3 vectors are already orthogonal, so we just normalize them, having
\[
\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 0 \end{bmatrix}.
\]

Now we let
\[
P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \\ 0 & 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.
\]

Since \(P \) is orthogonal, we have \(P^{-1} = P^T \).
\[
A = PDP^{-1} = PDP^T
\]
is the required orthogonal diagonalization. □

Exercise 32: Suppose that \(A = PRP^{-1} \), where \(P \) is orthogonal and \(R \) is upper triangular. Show that if \(A \) is symmetric, then \(R \) is symmetric and hence is actually a diagonal matrix.

Solution. By the assumptions we have \(P^{-1} = P^T \) and \(A^T = A \). This means that
\[
PRP^T = A = A^T = (PRP^T)^T = (P^T)^T R^T P^T = PR^T P^T.
\]
But \(P^T = P^{-1} \) are inverses of each other. So if we multiply the obtained identity by \(P^{-1} \) on left and by \(P \) on right, we obtain \(R = R^T \). Thus \(R \) is symmetric. Since all entries of \(T \) below the main diagonal are zeros, by symmetry all entries above the main diagonals are zeros too. So \(R \) is also diagonal. □

Section 7.2

Exercise 10: Let \(Q(x_1, x_2) = 9x_1^2 - 8x_1 x_2 + 3x_2^2 \). Classify the type of \(Q \) and make a change of variables \(\mathbf{x} = \mathbf{P}\mathbf{y} \) that eliminates all cross-product terms.

Solution. The matrix of \(Q \) is
\[
A = \begin{bmatrix} 9 & -4 \\ -4 & 3 \end{bmatrix}.
\]
First, we find the eigenvalues of A. The characteristic polynomial is

$$P_A(\lambda) = (9 - \lambda)(3 - \lambda) - 16.$$

Its roots are $\lambda_1 = 1$ and $\lambda_2 = 11$. Both are positive so Q is positive definite. (Of course, it is also positive semidefinite but of all types of Q we usually mention the one which is most precise.)

Let us compute the corresponding unit eigenvectors. We have

$$A - I = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix}.$$

We can take a vector $(1, 2)$. After normalizing it by $1/\sqrt{5}$, $v_1 = (1/\sqrt{5}, 2/\sqrt{5})$. Next,

$$A - 11I = \begin{bmatrix} -2 & -4 \\ -4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}.$$

Here we take $v_2 = (2/\sqrt{5}, -1/\sqrt{5})$. The vectors v_1 and v_2 are orthogonal as they should be (and each of norm 1). Hence, we take

$$P = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix}.$$

Then the transformation $x = Py$ transforms Q into $y_1^2 + 11y_2^2$.

Now, it could be a good idea to check this by hand. We have $x_1 = y_1/\sqrt{5} + 2y_2/\sqrt{5}$ and $x_2 = 2y_1/\sqrt{5} - y_2/\sqrt{5}$. Then

$$Q = 9(y_1/\sqrt{5} + 2y_2/\sqrt{5})^2 - 8(y_1/\sqrt{5} + 2y_2/\sqrt{5})(2y_1/\sqrt{5} - y_2/\sqrt{5}) + 3(2y_1/\sqrt{5} - y_2/\sqrt{5})^2$$

$$= \frac{1}{5}(9y_1^2 + 4y_1y_2 + 4y_2^2) - 8(2y_1^2 + 3y_1y_2 - 2y_2^2) + 3(4y_1^2 - 4y_1y_2 + y_2^2) = y_1^2 + 11y_2^2.$$

So, everything is OK!

Section 7.3

Exercise 6: Let $Q(x) = 7x_1^2 + 3x_2^2 + 3x_1x_2$. Find a) the maximum of $Q(x)$ subject to the constraint $x^Tx = 1$, b) a unit vector where this maximum is attained, and c) the maximum of $Q(x)$ subject to the constraints $x^T x = 1$ and $x^T u = 0$.

Solution. The matrix of Q is

$$A = \begin{bmatrix} 7 & 3/2 \\ 3/2 & 3 \end{bmatrix}.$$

Its eigenvalues are $\lambda_1 = 5/2$ and $\lambda_2 = 15/2$ with eigenvectors $v_2 = (-1, 3)$ and $v_1 = (3, 1)$. Hence the answer to a) is $5/2$; the answer to b) is $v_1/\|v_1\| = (3/\sqrt{10}, 1/\sqrt{10})$; the answer to c) is $5/2$.

Section 7.4

Exercise 10: Find an SVD of

\[A = \begin{bmatrix} 4 & -2 \\ 2 & -1 \\ 0 & 0 \end{bmatrix}. \]

Solution. In Step 1 we orthogonally diagonalize

\[A^T A = \begin{bmatrix} 20 & -10 \\ -10 & 5 \end{bmatrix}. \]

Its eigenvalues are \(\lambda_1 = 25 \) and \(\lambda_2 = 0 \). (We list them in decreasing order.) The corresponding normalized eigenvectors are \(v_1 = (-2/\sqrt{5}, 1/\sqrt{5}) \) and \(v_2 = (1/\sqrt{5}, 2/\sqrt{5}) \). By the way, although we are not required to do this, we can immediately write an orthogonal diagonalization

\[A^T A = V D V^T, \]

where

\[V = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} -2/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, \quad D = \begin{bmatrix} 25 & 0 \\ 0 & 0 \end{bmatrix}. \]

At this point it is a good idea to check if \(A^T A V = V D \).

In Step 2 we take the same matrix \(V \) as above, but the middle matrix \(\Sigma \) should have dimensions \(3 \times 2 \), the same as those of \(A \), so we just add a row of zeros:

\[\Sigma = \begin{bmatrix} 25 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

In Step 3 we construct \(U \). We see that \(A \) (or equivalently \(\Sigma \)) has rank \(r = 1 \). So the first column of \(U \) is

\[u_1 = \frac{A v_1}{\|A v_1\|} = \frac{(-10/\sqrt{5}, -5/\sqrt{5}, 0)}{\sqrt{20 + 5}} = \begin{bmatrix} -2/\sqrt{5} \\ -1/\sqrt{5} \\ 0 \end{bmatrix}. \]

We choose the remaining columns \(u_2 \) and \(u_3 \) of \(U \) so that \(U \) is orthogonal. This is the same as finding an orthonormal basis of

\[\text{Nul}(u_1^T) = \{ u \in \mathbb{R}^3 \mid u_i^T u = 0 \}. \]

We have

\[u_1^T \sim \begin{bmatrix} 1 & 1/2 & 0 \end{bmatrix}, \]

so a basis for \(\text{Nul}(u_1^T) \) is \(w_2 = (1, -2, 0) \) and \(w_3 = (0, 0, 1) \). Luckily for us these vectors are already orthogonal. (If they were not, then we would have to apply the Gram-Schmidt process to them.) So, it remains only to normalize them, obtaining \(u_2 = (1/\sqrt{5}, -2/\sqrt{5}, 0) \) and \(u_3 = (0, 0, 1) \). We take

\[U = [u_1 \ u_2 \ u_3]. \]

Thus the required SVD of \(A \) is

\[A = \begin{bmatrix} -2/\sqrt{5} & 1/\sqrt{5} & 0 \\ -1/\sqrt{5} & -2/\sqrt{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 25 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}. \]
Finally, we are done!