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The purpose of each problem-solving project is twofold: (i) To give you the
chance to be a mathematician by using whatever knowledge you happen to have,
and whatever strategies may occur to you, to tackle a challenging problem; and
(ii) Once you’ve solved the problem, to give a clear, thorough, step-by-step
explanation of the solution strategy. You should write up your results as though
you are the expert on the problem, and give a clear exposition which will be
understandable to non-experts.

When you write up your results, you’ll want to hold your reader’s hand
throughout the entire solution process. You might try and give the discussion
the feel of an article in a mathematics magazine, or something like that. One
suggestion I could offer is to hand a draft to your roommate or whomever and
ask them to read through it and see if they follow it (once they’ve read the
problem statement, of course). If they report that they got stuck at certain
points and were momentarily confused, then you know that those are the best
spots to offer a bit more explanation.

Another suggestion is to make believe that the problem you’ve chosen is
famous and notoriously hard and has gone unsolved for years and years. Imagine
that you are the first person to solve it. So the world will be very anxious to
learn how you did what they all tried in vain to do. So you will have to guide
them through the process.

The items at the end of the list are designated with (*) and are writing
assignments rather than problems. You may do only one such project; the other
two must be problem-solving projects. (Or you may do three problem-solving
projects.)

In addition to the items on this list, you may have an idea which may be
suitable for a problem-solving or writing project. If so, you must check with me
first to make sure that what you have in mind will fulfill a project requirement.

Each project counts for 20% of the final grade. Final drafts of all projects
must be turned in by class time on Friday, May 2, and may be turned in on any
day before that. One rough draft of each project must be submitted for me to
review and critique. I will return the draft to you as soon as possible with my
comments and suggestions for revision.

Due dates for drafts: February 8, March 21, April 21. Final versions of all
projects due May 2. (Drafts and final versions may be submitted early.)



1. Given an m×n “chessboard”, formed by m equally spaced horizontal line
segments and n equally spaced vertical line segments (a 4× 5 chessboard
is shown below), how many squares are determined by the line segments?
(The 4× 5 chessboard has 20 squares: 12 with an area of 1 square unit, 6
with area 4 square units, and 2 with area 9 square units.)

The following problem is taken from A Mathematics Sampler: Topics for
the Liberal Arts by W.P. Berlinghoff, K.E. Grant, and D. Skrein.

2. In a hidden monastery, embedded in the floor of a room are three silver
spikes. On one of them there are 50 gold disks, shaped like large washers,
which are graduated in diameter so as to form a conical tower. The monks
work tirelessly at the task of transferring the disks to re-form the tower
on a different spike, according to the following rules:

• Only one disk at a time may be moved.

• Each disk must be on one of the spikes except when being moved.

• A larger disk may not be placed on top of a smaller one.

What is the minimum number of moves that the monks must make to
complete their task? Assuming that they make no wasted moves and
move one disk every second, how long will it take them to finish?

3. Suppose a ten-digit number is to fill the boxes below:

0 1 2 3 4 5 6 7 8 9

Let’s call the box with a zero below it “Box 0”; call the box above the
numeral 1 “Box 1”, and the next one “Box 2”, and so on. Find a ten-digit
number whose digits full the boxes in the following way: The digit in Box
0 gives the number of times 0 occurs as a digit in the number; the digit
in Box 1 gives the number of times 1 occurs as a digit in the number; the
digit in Box 2 gives the number of times 2 occurs as a digit in the number,
etc. So, for example, if there were a 7 in Box 5, this would mean that
5 would occur seven times, i.e., seven of the ten digits would be 5. (An
example of such a number, then, might be 5, 855, 755, 055. But actually,
this particular number is unsatisfactory because, for example, there is a 0
in Box 7, which should mean that 7 does not occur as a digit.)



As with all of these projects, what is of interest is your problem solving
strategy, so you cannot get credit for simply turning in a sheet of paper
with a ten-digit number on it. You must explain the process whereby you
discovered an appropriate number.

Items 4 through 7 are taken from Mathematics: Problem Solving through
Recreational Mathematics, by Bonnie Averbach and Orin Chein.

4. In order to select capable contestants for their quiz shows, some producers
require prospective contestants to compete off camera. One show, “Frac-
tured Funnybones,” usually chooses four candidates and conducts a series
of head to head matches between each pair of them. The candidate who
performs the best is then chosen to appear on the show.

The game is played as follows: The contestants are shown a key word, and
whoever first thinks of a joke using that word in the punch line gets one
point. The first player to get five points wins.

When Manny Morris, Nancy Novokov, Patti Proctor, and Thomas Twick-
enham competed against each other, the results were as follows:

Patti won all three of her games and her opponents scored a total of only
2 points against her.

Nancy scored a total of 10 points and her opponents also scored 10.

Manny and Thomas both scored 8 points, but Manny allowed his op-
ponents 15 whereas Tom’s opponents scored only 14. In addition, Tom
scored more points against Patti than Manny did.

What was the outcome and the score of each head to head match?

5. Good poker players have four characteristics in common: They are familiar
with the odds associated with card distribution; they know when it is wise
to bluff; they have poker faces; and they are lucky.

Angel invited four friends to play poker one evening, around a big circular
table. They were Babs, Cleo, Dot, and Edie. The following was also true:

Everyone was sitting next to someone who knew the odds, but four of
the five were sitting next to someone who was not well versed in the
probabilistic aspects of the game.

Four of the people were sitting next to wise bluffers, but three of them
were sitting next to someone who did not know when to bluff.

Four of the players were sitting next to people with good poker faces, but
everyone was sitting next to someone who could not keep a straight face.

Exactly three of the people were sitting next to someone who was noted
for good luck.



Each of the players had at least one of the desirable traits; but only one,
the big winner of the night, had all four.

Babs knows the odds and knows when to bluff, but does not have a poker
face and is not noted for good luck.

Edie is not sitting next to anyone who knows when to bluff.

The person on Dot’s right has a poker face.

The person on Cleo’s left does not know when to bluff.

Angel knows the odds, but is not lucky.

Who was the big winner of the evening, what was the seating arrangement,
and which traits did each of the five players have?

6. Three women (Abby, Janice, Linda) and two men (Martin, Roberto) are
a singer, a dancer, a comic, a television writer, and a theatrical agent,
although not necessarily in that order.

Abby said: I’m not the comic. The writer and the dancer are happily
married. The singer and the agent are engaged to be married.

Janice said: The singer is my cousin. The writer and the dancer are
siblings. The comic and the agent share an apartment.

Linda said: I am not the writer. The singer and the agent hate each other.
The dancer and the comic frequently work together.

Martin said: The singer owes me $10. The writer and the dancer are
not related and have never met. The comic and the agent are next-door
neighbors in an apartment house.

Roberto said: The singer saved my life once. The agent lives alone in an
old mansion. The dancer and the comic have never met.

If the only certainty is that every statement in which an individual alludes
to his or her own profession is true, who is who?

7. The magician placed an apple, a banana, a peach, and 25 matchsticks on
the table. He then selected three volunteers from the audience. Their
names were Alvin, Julia, and Melonie. The magician then handed one of
the matchsticks to Alvin and two matchsticks to Julia, but he did not give
any to Melonie. He was then blindfolded, and each of the volunteers was
asked to remove one of the fruits from the table.

“Whichever of you removed the apple should now remove a number of
matchsticks equal to the number I handed you a moment ago. Whoever
removed the banana should remove three times as many matchsticks as
you were originally given. Finally, the remaining person should remove
nine times as many sticks as I gave to him or her.”

“Now, tell me how many sticks remain on the table.”



“Seven,” was the reply.

“Then Alvin took the peach, Julia took the banana, and Melonie took the
apple,” declared the magician.

Naturally, he was correct.

Explain how this trick works.

The following problem is due to A. Gottlieb, “Puzzle Corner”, Technology
Review, January 1971.

8. There are five houses in a row (east to west), each of a different color
and inhabited by men of different nationalities, with different pets and
preferences in beverages and cigarettes.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffee is drunk in the green house.

The Ukranian drinks tea.

The green house is east of the ivory house and next to it.

The Old Gold smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the most westerly house.

The man who smokes Chesterfields lives in the house next to the man with
the fox.

Kools are smoked in the house next to the house where the horse is kept.

The Lucky Strike smoker drinks orange juice.

The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who drinks water? And who owns the zebra?



I have adapted the following problem from one which appears in The
Master Book of Mathematical Recreations, by Fred Schuh.

9. The fair Freda is a temperamental princess whose love cannot be expected
to last. One day Freda stood in the courtyard with a large number of suit-
ors arranged in a circle around her. A guard at the entrance to the palace
grounds remarked, somewhat anachronistically, “Musta been a hundred
fellers came through that gate.”

Bartholomew stood to the left of Beauregard; each possessed charm and
confidence in abundance, and each was sure he would win the heart of the
fair Freda.

The maiden began to move round the circle, starting with Beauregard
and proceeding to his right, pointing at each suitor in turn and saying,
“Love you. Love you not. Love you. Love you not . . . .” Each suitor
to whom she said, “Love you not” dropped out of the circle and left the
courtyard, dejected. Freda continued round and round the circle, until
only Bartholomew was left standing . . . whereupon she announced that
she would marry Beauregard.

The question is this: Can we improve upon the palace guard’s estimate of
the number of suitors in the original circle?

I have adapted the following problem from one appearing in Principles of
Mathematical Problem Solving, by Martin J. Erickson and Joe Flowers.

10. Suppose Kukla, Fran, and Ollie are all very good at deduction and mental
arithmetic, and each has a positive integer written on his or her forehead,
so that they can see each other’s numbers but not their own. Their teacher
writes the numbers 11, 17, and 65 on the blackboard, and the three indi-
viduals are told that one of the numbers on the board is the sum of the
three numbers on their foreheads. Kukla is asked, “Do you know your
number?” If the answer is no, Fran is asked the same question, and then
Ollie is asked. If all three answer in the negative, Kukla is asked again,
then Fran, then Ollie, and so on in a cyclic pattern. Show that eventually,
someone will answer, “Yes!”

Once you have revealed how the game works with the numbers 11, 17, and
65, consider what will happen if the numbers are changed to some other
combination of three numbers. Will it always happen that some player
is able to determine the number on his/her own forehead? Or does this
depend somehow on the triplet of numbers initially chosen?



The following problem is due to Kevin Purbhoo, American Mathematical
Monthly, January 1998.

11. On a remote Norwegian mountain top, there is a huge checkerboard, 1000
squares wide and 1000 squares long, surrounded by steep cliffs to the north,
south, east, and west. Each square is marked with an arrow pointing in
one of the eight compass directions, so (with the possible exception of some
squares on the edges) each square has an arrow pointing to one of its eight
nearest neighbors. The arrows on squares sharing an edge differ by at
most 45 degrees. A lemming is placed randomly on one of the squares,
and it jumps from square to square following the arrows. Prove that the
poor creature will eventually plunge from a cliff to its death.

I have adapted the following problem from one appearing in Concrete
Mathematics: A Foundation for Computer Science by R.L. Graham, D.E.
Knuth, and O. Patashnik. (You needn’t be interested in computer science,
though, to solve the problem.)

12. Given a real number s, define [s] to be the integer rounddown of s; that
is, the greatest integer which is less than or equal to s. (So for example,
[3.267] = 3, while [−4.1117] = −5. For this problem, though, we will only
be interested in positive values of s.) Suppose the Shootyerfoot Casino has
a roulette wheel with 1000 slots, numbered 1 through 1000, and a game in
which you bet $1, and they spin the wheel. If the number N which comes
up on the spin is divisible by [ 3

√
N ], then all players win and are given $5.

Otherwise, the house collects all the $1 bets.
Now of course, most casino games are designed so that the house has the
advantage. Is that the case here? If so, explain why. If not, explain
how the casino can modify the game (and you’ll probably want to find
the simplest modification(s) you can) so that the house does have the
advantage.

13. Apply the principles of probability theory to the game of Yahtzee, by con-
sidering several scenarios which one might encounter during game play. (A
fun way to start this project is to play several games of Yahtzee with your
roommate and jot down such scenarios as you encounter them.) Examples
might include the following:

• Suppose, in some round, your first roll is 1, 2, 2, 3, 3. Is it “smart”
to keep the twos and threes and try for a Full House (assuming you
need it)? What is the probability that with two attempts at rolling
one die you will roll a 2 or a 3, so that you get a Full House?

• Suppose again that in some round you roll 1, 2, 2, 3, 3. If you keep
1, 2, 3 and roll the other two dice to try for a Small Straight or a
Large Straight, what is the probability that you will succeed?



• Suppose you have only the Yahtzee and Three-of-a-Kind boxes left
to fill, and you roll 5, 5, 6, 6, 6. Now you have a guaranteed Three-
of-a-Kind worth 28 points. But by keeping the three sixes and rolling
the other two dice (twice if necessary), you may get a Yahtzee. If you
choose that strategy, what is the expected point value of the round?

You need not choose to investigate any of the scenarios above; perhaps
you are more interested in others. Three scenarios is probably not enough;
about five should do it. (If you wish, you might also include the results of
a game in which you tested your findings, and comment on how well − or
poorly − probability theory came through for you.)

14. Let us start with what we shall call the Five City Problem: We wish to
start in Pittsburgh, travel to four other cities, and return to Pittsburgh,
in such a way as to minimize the total distance travelled. The four other
cities are St. Louis, New York, Atlanta, and Dallas. Mileages are given
below:

Atl Dal NYC Pitt St. L
Atlanta * 795 841 687 541
Dallas * * 1552 1204 630
New York * * * 368 948
Pittsburgh * * * * 588

Intuitively, one expects that due to the relative geographic locations of
the cities, the shortest circuit will be as follows: Pittsburgh to New York,
New York to Atlanta, Atlanta to Dallas, Dallas to St. Louis, and St. Louis
to Pittsburgh. (Or one may travel the same circuit in reverse order.) You
should verify, however, that there are 12 possible circuits, and that the
one just given really is the shortest.

Now comes the fun part: Suppose a sixth city is added to the list, and
consider the Six City Problem. You may choose the new city to be what-
ever you like, but to make things interesting, you should not choose a city
which is directly between two of the above cities. Verify that there are
now 60 possible circuits, but for heaven’s sake, do not do this by listing
all of them! Much too tedious. Try to find a slicker way to “count” the
number of circuits.

Now since there are 60 possibilities, it would be nice to have a method
available which would find the shortest circuit without using a
“brute force” method, i.e., listing all 60 of them and comparing their
lengths.

Before you look for such a method, though, see if you can determine
how many circuits there would be in a Seven City Problem, an Eight
City Problem, etc., and try to determine a formula for the number of



circuits in an n-City Problem, where n is an unknown positive inte-
ger. You should find that the number of circuits grows by staggering
amounts as the number of cities increases.

Next imagine that you have a supercomputer which will check circuits
for you, at the rate of, say, a billion circuits per second. How many
cities would lead to so many circuits that the computer could not succeed
in checking them all during your lifetime? Once you’ve answered this
question, it should be obvious that for even fairly modest City Problems,
checking all possible circuits is simply not an option.

So your next move should be to try and determine some algorithm, i.e.,
a step-by-step general procedure, which, given any number of cities and
the mileages between them, finds a . . . well, pretty good circuit. It may
not be guaranteed to be the shortest circuit possible, but, by some criteria
which you will need to explain, the circuit identified by your algorithm
is . . . mmm, not bad. You should give some examples of your method
applied to Five City Problems (different from the original one above),
with fabricated data if you like, and show how your method sometimes
gives the best circuit, but sometimes does not. The algorithm should be
blind to geography, which is to say that your method should not take into
consideration the relative positions of the cities; it should only use the
mileage data.

Finally, once you have decided on a strategy for finding not-too-shabby
circuits, put it to a real challenge: Take the five cities above and add
10 more, of your choice, for a Fifteen City Problem. (To make things
interesting, try to choose the cities so that they are not arranged in some
“nice” pattern, i.e., circular.) Again, the goal is to start in Pittsburgh,
hit each of the other 14 cities once, and return to Pittsburgh, minimizing
the total distance travelled. In your write-up, include a complete mileage
table for the 15 cities involved.

Determine the circuit chosen by your algorithm, and indicate the total
mileage. Now consult a map and see if your solution seems intuitively
good from a geographical standpoint. Using your map, trace ten other
circuits which seem to you as though they would be strong candidates for
the shortest. Then refer to the mileage table to compute the lengths of
these other ten circuits. Tabulate these lengths and compare them to the
circuit which your algorithm chose. How do they compare? How well did
your algorithm do? If it didn’t do so well, include a discussion of what
may have gone wrong.

Incidentally, if you can develop an algorithm which is guaranteed to find
the shortest circuit (without checking all of them), given any number of
cities, it should be good for a Ph.D. thesis in mathematics or computer
science, as well as worldwide fame; no such algorithm is known.



15. From “The Jogger’s Problem”, R.S. Bird, Information Processing Letters,
13, No. 3, December 1981, pages 114-117: “Consider the plight of a par-
ticularly reluctant jogger who, while willing to undertake exercise, wishes
to make it as least unpleasant as possible. The jogger is confronted with
a network of roads each of which possesses some positive measure of un-
desirability. Beginning at a designated point the jogger wishes to plan a
circular route, no road being traversed more than once, of minimum total
undesirability.” Give some thought to this problem, in the case that the
“reluctant jogger” wishes to start at home and traverse some minimum
total distance, such as five miles. Observe that one of the constraints of
the problem is that the jogger may not run down any given stretch of
road more than once, and each stretch of road (say from one intersection
to another) is rated according to its unpleasantness, by such factors as,
let’s say, muddiness, steepness, traffic, unrestrained dogs, or what have
you.

As you search for an efficient strategy to solve the problem, I would recom-
mend that you draw for yourself quite a lot of “maps” which have different
characteristics; the goal is to look for a strategy that would apply to all of
them and, if possible, to any “map” that one might consider. (I put the
term “map” in quotes because you may be able to work with some more
simplified diagram; if so, you should show how to convert an actual map
into your simpler diagram.)

To simplify your investigation, you may want first to consider only the
types of “undesirability factors” which would not depend on the direction
of travel; for instance, a muddy road is muddy regardless of which way the
jogger is running, but a steep road is steep only in one direction. Once
you have decided on an efficient strategy for handling the jogger’s problem
with direction-independent undesirability factors, see if you can modify
your strategy to include steepness as a factor. (Remember, however, that
if steepness is included, the jogger must return to the original elevation
by the time he/she gets back home.)

Something else to think about: If we stipulate that the jogger wishes to
run at least five miles, there is the possibility that the most unpleasant
route is also the shortest (let’s say exactly five miles), while the least
unpleasant route is the longest (thirty miles or some outrageous length).
So you may want to cook up an example where this sort of outcome results,
and perhaps present a modified strategy that attempts to guard against
circuits which are too long.

This is a very open-ended problem, so if you choose it, I would suggest
you meet with me to discuss it a bit after you’ve worked on it some. It’s
probably also a good idea to show me your examples before you write up
your first draft.



16. In class, we have studied (or are studying, or will study) the following five
election methods:

• The Plurality Method

• The Borda Method

• The Condorcet Method

• The Plurality-with-Elimination Method

• The Plurality-with-a-Runoff Method

We have also considered four fairness criteria for election methods. They
are

• The Majority Criterion

• The Independence-of-Irrelevant-Alternatives Criterion

• The Condorcet Criterion

• The Monotonicity Criterion

Write a paper in which you study any three of the five election methods
above. For each of the three methods you choose, do the following:

(a) Explain how the method works in practice.

(b) Give examples of the method applied to particular preference sched-
ules. You must create your own examples.

(c) Explain whether the method satisfies or violates each of the fairness
criteria. (No method will satisfy all four of them.) In each case, if
the method satisfies the criterion, you must establish that fact with
a general argument; if the method violates the criterion, you must
provide a specific example to show how the violation may occur.

The paper should be self-contained and not assume that the reader already
knows about election methods or fairness criteria. This will mean, for
example, that you will need to provide explicit statements of the fairness
criteria as part of your write-up.

Problems 17 and 18 were adapted from the 2002 Emmy Noether High
School Mathematics Day at Texas Tech University.

17. At 3:00 the hands of an analog clock form an angle of 90 degrees. At 9:00
a 90-degree angle is formed once again. What angle do the hands form at
7:38? Choose two other clock times and determine the angle formed by
the hands at those times. (Your two examples should be interesting and
nontrivial, not straightforward and simple.) Then discuss (i) all possible
clock times for which the hands form a 90-degree angle, (ii) all clock times



for which the hands are lined up perfectly, thereby forming a 0-degree
angle, and (iii) all clock times for which the hands point in diametrically
opposite directions, thereby forming a 180-degree angle.

18. The natural numbers (i.e., the “counting numbers” 1, 2, 3, 4, etc.) are
printed on a ribbon with one number immediately following the other, like
so:

123456789101112131415 . . . .

The ribbon stretches due north from Pittsburgh, all the way to the north
pole, then southward on the other side of the globe, all the way to the south
pole, and then back north to Pittsburgh, where the ribbon is attached to
itself. Each digit requires 2 centimeters to print. What is the last complete
number printed on the ribbon?

Problem 19 is inspired by the article “Lost in a Forest”, by Steven R.
Finch and John E. Wetzel, in The American Mathematical Monthly, 111,
No. 8, October 2004.

19. Imagine that you are stranded in the ocean, in a dense fog at night, some
unknown distance from a straight shoreline. Assume that you can stay
afloat, and swim, forever (without sleeping or eating). The challenge is
to swim to shore. Assume that you have a compass and some device that
will measure distances (electronically, let’s say).

Obviously you would like to swim directly toward the shore, in a direction
perpendicular to the shoreline. But without being able to see the shore
(even if you are very close), you will have no idea which direction that is.
So of course it is ill-advised to just pick some direction and swim off in a
straight path, because you may never reach the shore. So you will need
some strategy which entails changing direction (at least once).

One strategy might be to swim westward, say, some distance d units. (The
units could be feet, or miles, or whatever; it doesn’t matter, as you’ll see.)
Then you could turn northward, and swim the distance d. Then you can
turn eastward, swimming a distance 2d units, then go south 2d units, then
west 3d units. Then north, east, south, west, etc., so that your path is
a “square spiral”. This way, you keep widening out from your starting
point, and eventually you will have to hit the shoreline.

But is this the “best” strategy? To answer that question, you would have
to formulate some criterion (or criteria) by which one strategy is “better
than” another. For instance, other types of “spirals” would work; instead
of making each turn a 90 degree angle, you could turn at a 135 degree
angle each time, starting out going west, then turning northwest, then
north, then northeast, etc.



The latter strategy is fortuitously more successful if the shoreline hap-
pens to lie north of your starting position, close enough so that your first
northward leg takes you right to shore. But the latter strategy is worse
if the shoreline is very close to you, but to the south. So obviously, if
you compare any two strategies A and B, you may find that A is “better
than” B in particular cases, and B is better than A in others, depending
on locations and distances. But are there criteria by which you can assert
that one strategy is generally better than another? Is there a way to say,
“This strategy is more likely to get you to shore with less swimming than
that strategy?”

So this project is to investigate such questions. The strategies you could
conceive are of course limitless. So experiment with some, and then discuss
some. Discover for yourself ways in which you can reasonably compare
them. (To open up more possible strategies, you may assume that it is
possible to swim in a “curved spiral”, and/or swim along a path that
traces out a circle, or part of a circle.)

In addition to the scenario above, wherein the distance to the shoreline is
not known, also consider the scenario in which is the distance to shore is
known. (You just don’t know the direction to shore.) Is this new infor-
mation useful in any way? Does this have any effect on the recommended
strategy or strategies?

Have fun! There are no “right” or “wrong” answers on this one; only
“good” or “not altogether satisfying” answers.

20. Write a paper on the mathematics behind cryptography (or cryptology),
the science of making and breaking codes. If you enjoy prime numbers, or
number theory in general, then you should find cryptography interesting.
Your paper should discuss four or five well known cryptographic schemes
(that is, types of codes) and give original examples (this means exam-
ples that you design yourself and explain) of some simple ciphers (coded
messages) of each type. You should also indicate some of the common
applications of effective encoding; a brief history of the subject might also
be in order.

Optional: If you have an interest in true crime, you may also want to
include an account of a notorious and quite unexpected instance of en-
cryption. In the late 1960s and early 1970s, a serial killer calling himself
“The Zodiac” was operating in the San Francisco area. Along with a
number of taunting letters to the Bay Area newspapers, he sent a 408-
character coded message, claiming, “In this cipher is my identity.” If you
know anything about criminal profiling, then you will realize the urgency
with which such a message would need to be decoded, not only to de-
termine the actual content of the message, but also to guage the level of
sophistication of the code, thereby providing some clue as to what type of



person would be capable of designing it. A comprehensive treatment of
the Zodiac case is given in Robert Graysmith’s book Zodiac.

The code was cracked, but the Zodiac murders are still unsolved.

21. (*) Do some research on early attempts to make the notion of time quan-
titative. When did the human race become interested in developing units
for measuring time, and why? To what extent were early attempts to mea-
sure time successful? (Or is the last question even fair? Do we have much
different criteria for successful measurement of time than our ancestors
did?) Write a paper addressing these questions, and use the answers to
advance your opinion either that time is an actual natural/physical entity,
or that it is a mathematical artifice. (In attempting to find sources for
this project, you may have little success searching under time; the keyword
calendars may be more helpful. Philosophers and sociologists have been
known to ponder this question, too, so you may be able to get some help
there.)

22. (*) Read Flatland, a classic short novel written in 1884 by a theologian
named Edwin A. Abbott. The narrator of the story is a square who lives
in a two-dimensional world whose inhabitants’ social stations in life vary
according to their geometric shapes. The square is visited by a sphere
from a 3-dimensional world, who appears to him as a circle since the
square can only see that part of the sphere which is intersecting the plane
of “Flatland”. By and by the sphere is able to convince the square of the
existence of a third dimension which the square has never experienced.

Review this story, commenting first on its effectiveness in communicating
mathematical ideas (you might offer any insights you gained from reading).
But also discuss the value of the story as a work of theology and/or social
commentary, providing examples from the narrative of how Dr. Abbott
used his cute little story of scientient geometric shapes to satirize the
prevailing opinions of his day.

23. (*) Write a paper discussing the contribution of mathematics, and of math-
ematicians, to society. What is it, exactly, that mathematicians do for the
species as a whole? What is the role of the mathematician in society?
Why should we value this particular specialty? Often people are surprised
to find that some academics do research in mathematics. They ask, “How
can one do mathematical research?” They seem unable to conceive that
there can be new discoveries and new knowledge generated in mathemat-
ics. Also, we often see news items concerning new advances in medicine,
archaeology, even theoretical physics; but new advances in mathematics
attract very little attention. Nor do we usually see documentaries which
spotlight the career of a prominent mathematician. So why is that?



24. (*) This project is similar to the one above and is for movie buffs: Write
a paper on mathematics and mathematicians in film. You must watch
at least three movies and critique their portrayal of the mathematician
character. The movie A Beautiful Mind is based (loosely) on the book
by the same name (see Project 26) and on the life of John Nash. So the
mathematician in this movie is not fictional (although many of the events
depicted are). All of these movies include fictional mathematicians: Pi,
Good Will Hunting, Sneakers, The Mirror Has Two Faces.

Discuss whether you think these movies have any impact on the general
public’s conception of (1) mathematicians as people, and/or (2) what role
mathematicians play in society.

25. (*) Write a paper on the history of one of the most elusive theorems of
mathematics, Fermat’s Last Theorem, named for Pierre de Fermat (1601-
1665), a French lawyer who pursued mathematics as a hobby. Fermat
studied the equation xn + yn = zn and asserted that no positive integers
x, y, and z satisfy this equation when n > 2. To be more exact, in 1637
he wrote the following in the margin of a book: “ . . . it is impossible to
separate a cube into two cubes, a fourth power into two fourth powers,
or, generally, any power above the second into two powers of the same
degree: I have discovered a truly marvelous proof which this margin is
too narrow to contain.” Unfortunately, Fermat never left behind a copy of
his “truly marvelous proof,” and for over three centuries, mathematicians
endeavored to find proofs of their own, a number of which were announced
and even published before being found to be flawed. Finally, in 1993
Princeton University mathematician Andrew Wiles announced that he had
proved the result. You may be able to find news items concerning Wiles’
announcement even in popular periodicals (The Wall Street Journal ran a
story). It turned out, though, that Wiles’ original proof was inadequate,
so he and his former student, Richard Taylor, took some time to repair it.
For this chapter in the story, see Notices of the American Mathematical
Society (which you can find in the E & S library), volume 40 (1993), pages
575-576; volume 41 (1994), pages 185-186; volume 42 (1995), page 48; and
volume 44 (1997), pages 346-347.

For your research, you will want to consult some biographies of Fermat
which were published before 1993 in order to get a sense of the tantalizing
mystery shrouding his Last Theorem; hopefully you can also find accounts
of unsuccessful attempts to prove the result. (You needn’t restrict your
search to sources which exclusively concern Fermat; virtually any com-
prehensive history of mathematics will contain a chapter on Fermat or his
era.) Finally, you should summarize the story of how Wiles and Taylor put
the problem to rest. A possible source here is the book Fermat’s Enigma
by Simon Singh.



26. (*) Read Paul Hoffman’s book The Man Who Loved Only Numbers and
write a biographical paper on Paul Erdos (1913-1996), a fascinating char-
acter whose mathematical research so consumed him that he couldn’t be
bothered to own a home, have a family, or even take a job! “Property is
nuisance”, he said. His life was an optimization problem: How can one
maximize the amount of time spent doing mathematics, while minimizing
the time spent . . . well . . . doing anything else?

Erdos was one of a kind, a scholarly nomad who was welcomed everywhere
he went (which is all over the world) because he was so intellectually
stimulating and because he was a genuinely nice fellow. He would arrive
at each new destination declaring, ”My brain is open!”

Your paper should outline Erdos’ life and also include some discussion of
his scholarly work and its significance.

27. (*) Read Sylvia Nasar’s excellent book A Beautiful Mind and prepare a
condensed biography of John F. Nash, a remarkable mathematician born
in West Virginia in 1928, who battled schizophrenia for some 30 years.
The blurb on the jacket of Nasar’s book reads, “A legend by the age
of thirty, recognized as a mathematical genius even as he slipped into
madness, John Nash emerged after decades of ghostlike existence to win a
Nobel and world acclaim.” In 1994, Nash won a Nobel prize in economic
science for a paper he wrote in 1949, before he had completed his doctoral
thesis!

Your paper should outline the unusual trajectory of Nash’s life and also
give some treatment of his scholarly work and its significance. You may
also wish to watch the 2001 movie, A Beautiful Mind, and comment on
how well (or poorly) the film conveys Nash’s life story. (Nash obtained
his undergraduate degree at CMU. He is still alive and lives in Princeton
Junction, New Jersey.)


