next up previous
Next: About this document ...

CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
21-259 Calculus in Three Dimensions
Vector Potential

Let

\begin{displaymath}
{\bf F}(x,y,z)=P(x,y,z){\bf i}+Q(x,y,z){\bf j}+R(x,y,z){\bf k}
\end{displaymath}

be a smooth field defined on ${\bf\cal R}^3$. Suppose ${\bf F}$ is incompressible, so that

\begin{displaymath}
\nabla \cdot {\bf F}=0.
\end{displaymath}

Then

\begin{displaymath}
{\bf F}=\nabla \times {\bf G}
\end{displaymath}

for some field

\begin{displaymath}
{\bf G}(x,y,z)=A(x,y,z){\bf i}+B(x,y,z){\bf j}+C(x,y,z){\bf k}.
\end{displaymath}

This is a special case of Poincare's Lemma.

  1. Suppose we set

    \begin{eqnarray*}
A(x,y,z) & = & \int_0^1 t\left[ z Q(tx,ty,tz)-yR(tx,ty,tz) \ri...
...z) & = & \int_0^1 t\left[ y P(tx,ty,tz)-xQ(tx,ty,tz) \right] dt.
\end{eqnarray*}



    Show that ${\bf F} = \nabla \times {\bf G}$, where ${\bf G}=\langle A,B,C
\rangle $.

    [Note: We may write

    \begin{displaymath}
{\bf G}({\bf r})=\int_0^1 t \ \left[ {\bf F}(t {\bf r})
\times {\bf r}
\right] \
dt,
\end{displaymath}

    and may therefore also write for incompressible fields ${\bf F}$

    \begin{displaymath}
{\bf F}({\bf r}) = \int_0^1 t \ \nabla \times \left[ {\bf F}(t {\bf r})
\times {\bf r}
\right] \
dt
\end{displaymath}

    where ${\bf r}=\langle x,y,z \rangle$.]

  2. If ${\bf F} = \nabla \times {\bf H}$, for some other field ${\bf H}$, then ${\bf H}={\bf G}+{\bf K}$ for some conservative field ${\bf K}$.

  3. Let

    \begin{displaymath}
{\bf F}(x,y,z)=
\left( 2ye^{xz}+xye^{yz} \right) {\bf i}+
\l...
...x-y^2ze^{xz}\right) {\bf j}+
\left(x^2-e^{yz} \right) {\bf k}.
\end{displaymath}

    Show $\nabla \cdot {\bf F}=0$, and find ${\bf G}$ such that ${\bf F} = \nabla \times {\bf G}$.





Timothy J Flaherty 2002-04-18