CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
21-256 Review Exam 3, Spring , 2006

  1. Evaluate

    $\displaystyle \iint \limits_R x \cos y \ dA, $

    where $ R$ is the rectangle $ \{ (x,y) : 1 \leq x \leq 2, 0 \leq y \leq \pi/2 \}$

  2. Evaluate

    $\displaystyle \iint \limits_D e^{x^2} \ dA, $

    where $ D$ is the triangular region with vertices $ (0,0)$, $ (2,4)$, and $ (2,0)$.

  3. Evaluate

    $\displaystyle \iint \limits_D x \ dA, $

    where $ D$ is the plane region in the first quadrant bounded by the curves $ y=x^2$ and $ y=-x^2+2x+4$

  4. Evaluate

    $\displaystyle \iint \limits_D \sqrt{4x^2+4y^2} \ dA, $

    where $ D$ is the plane region bounded by the curves $ x^2+y^2=4$, $ x^2+y^2=1$, $ y=0$, and $ y=x$.

  5. Use the supplied table to find the probability $ P(50 \leq X \leq 70 )$ for a continuous random variable $ X$ with normal distribution with mean $ \mu=58$ and standard deviation $ \sigma=16$.

  6. Find the probability $ P( 4 \leq X+Y )$ for continuous random variables $ X$ and $ Y$ with probability density function

    \begin{displaymath}
f(x,y)=\left\{
\begin{array}{lr}
2e^{-x-2y}, & x \geq 0, y \geq 0 \\
0, & {\rm otherwise}
\end{array}\right.
\end{displaymath}

  7. Evaluate

    $\displaystyle \iiint \limits_E x \ dV, $

    where $ E$ is bounded by the plane $ 6x+3y+z=6$ and the coordinate planes $ x=0$, $ y=0$, and $ z=0$.

  8. Use spherical coordinates to evaluate

    $\displaystyle \iiint \limits_E \ dV, $

    where $ E$ is the region in the first octant bounded by the sphere $ x^2+y^2+z^2=9$, $ y=0$, and the planes $ z=0$, $ y=0$ and $ x=y$.

  9. Use the transformation $ x=u/3$, $ y=v/4$ to evaluate

    $\displaystyle \iint \limits_D y \ dA, $

    where $ D$ is the region in the first quadrant bounded by the ellipse $ 9x^2+16y^2=1$.





Timothy J Flaherty 2006-05-01