CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
21-256 Review Exam 2, Spring , 2006

  1. Find the limit, or show it does not exist:

    \begin{displaymath}
\lim_{(x,y) \rightarrow (0,0)} \frac{x^2y}{x^4+2y^2}
\end{displaymath}

  2. Find $\frac{\partial w}{\partial t}$ when $t=0$, $s=1$, given that $w=x^2+2xyz+y^4+z^3$, $x=e^{-t}\cos(\pi s)$, $y=e^{-2t}\sin(\pi s)$, $z=st$.

    1. Find the directional derivative of $f(x,y)=\frac{xy^2}{x^2+y^2}$ at the point $(1,1)$ in the direction of $\vec{v}=\langle 3,-4 \rangle$.
    2. Find the maximum directional derivative of $f(x,y)=\frac{xy^2}{x^2+y^2}$ at the point $(1,1)$ and the direction in which this occurs.

  3. Find all local maximum, minimum, and saddle points of $f(x,y,z)=4x^2+2y^2+4z^2+4x-14y-xy+2yz+16$.

  4. Use Lagrange multipliers to determine the absolute maximum of $f(x,y,z)=3x+2y-5z$ subject to the constraints $x^2+4z^2=1$ and $2x+y=4$.

  5. Find the Least Squares Approximation of the data:

    x 1 2 3 4
    y 5 3 2 0





Timothy J Flaherty 2006-03-29