CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
21-256 Review Exam 1, Spring , 2006

  1. Multiply:

    \begin{displaymath}
\left[
\begin{array}{rrr}
1 & 3 & -1 \\
2 & 1 & 4
\end{arra...
...begin{array}{rr}
2 & 3 \\
0 & 1 \\
-1 & 4
\end{array}\right]
\end{displaymath}

  2. Solve the following system of equations by applying Gaussian elimination on an appropriate augmented matrix. Express your result in vector form.

    \begin{displaymath}
\begin{array}{rrrrrrrrrrr}
x_1 & + & 2x_2 & - & x_3 & + & 2x...
...+ & 4x_2 & - & 4x_3 & - & 3x_4 & + & 12x_5 & = & -2
\end{array}\end{displaymath}

  3. Find the inverse (if it exists) of the matrix:

    \begin{displaymath}
\left[
\begin{array}{rrr}
2 & 3 & -9 \\
-4 & -5 & 15 \\
2 & 1 & -6
\end{array}\right]
\end{displaymath}

  4. Find the center and radius of the sphere given by the equation $x^2-4x+y^2+y+z^2+4=0$.

  5. Find the vector projection ${\bf {proj} }_{ \vec{a}} \vec{b}$ of the vector $ \vec{b}=\langle 2, -3, -1 \rangle $ onto the vector $ \vec{a}=\langle 2,-2,1 \rangle $.

  6. Find the volume of the parallelepiped that has adjacent edges $PQ$, $PR$, and $PS$, with $P(3,-1,2)$, $Q(5,3,1)$, and $R(-1, 0, 1)$, and $S(-2,-5,0)$.

  7. Find the parametric equations of the line containing the points $P(2,4,2)$ and $Q(3,4,0)$.

  8. Find the equation of the plane containing the points $P(2,3,1)$, $Q(5,0,-2)$, and $R(1,9,0)$.





Timothy J Flaherty 2006-02-13