next up previous
Next: About this document ...

CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
21-256 Review Exam 1, Spring 2004

  1. Determine if the following sequence converges or diverges. If it converges find the limit.


    \begin{displaymath}
a_n= \frac{2n^2+e^{-n}}{n^2+\cos n}
\end{displaymath}

  2. Determine if the following series converges or diverges. If it converges find the sum.


    \begin{displaymath}
\sum_{n=1}^{\infty} (-4)^{1-n} (\pi)^{n}
\end{displaymath}

  3. Determine if the following series converges or diverges.

    \begin{displaymath}\sum_{n=1}^{\infty} \frac {\sqrt[4] {n^3+n^2+1} }{\sqrt[5]{1-n+n^9}}
\end{displaymath}

  4. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n \ln n}
\end{displaymath}

  5. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=1}^{\infty} \frac{\sin^n n}{n^n}
\end{displaymath}

  6. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=0}^{\infty } \frac{(-e)^n}{n!}
\end{displaymath}

  7. Find the interval of convergence of the following series - you do not need to test endpoints.

    \begin{displaymath}
\sum_{n=1}^{\infty } n^2 4^n (x+3)^{2n}
\end{displaymath}

  8. Find a power series representation and interval of convergence of

    \begin{displaymath}
f(x)=\frac{ 2x^2}{4x+3} .
\end{displaymath}

  9. Find the Taylor series centered at $a=0$ for $f(x)=xe^{x^2}$. You may use the known series for $e^x$.




next up previous
Next: About this document ...
Timothy J Flaherty 2004-02-08