1. A sequence X_0, X_1, \ldots of random variables is a supermartingale if
 \[E[X_{i+1}|X_0, \ldots, X_i] \leq X_i \quad \text{for } i = 0, 1, \ldots \]
 Suppose \(0 \equiv X_0, X_1, \ldots \) is a supermartingale for which there are constants \(\eta, N \) such that \(10\eta < N \) and
 \[X_i - \eta \leq X_{i+1} \leq X_i + N. \]
 Prove that for any \(0 < \alpha < t\eta \) we have
 \[\Pr(X_t \geq \alpha) \leq \exp\left\{ -\frac{\alpha^2}{3t\eta N} \right\}. \]

2. The Hajós number of a graph \(G \) is the maximum number \(k \) such that there are \(k \) vertices in \(G \) with a path between each pair so that all the \(\binom{k}{2} \) paths are internally pairwise disjoint (and no vertex is an internal vertex of a path and an endpoint of another). Is there a graph whose chromatic number exceeds twice its Hajós number?

3. Let \(G \) be the graph whose vertices are all \(7^n \) vectors of length \(n \) over \([7]\), in which two vertices are adjacent if they differ in precisely one coordinate. Let \(U \subseteq [7]^n \) be a set of \(7^n-1 \) vertices, and let \(W \) be the set of vertices in \(G \) whose distance from \(U \) exceeds \((2 + c)\sqrt{n}\), where \(c > 0 \) is a constant. Prove that \(|W| \leq 7^n e^{-c^2/2} \).

4. Let \(S_n \) be the collection of all permutations of \([n]\). For a permutation \(\pi = (\pi(1), \ldots, \pi(n)) \) in \(S_n \), let \(X(\pi) \) be the length of a longest increasing sequence (i.e. a sequence \(i_1 < i_2 < \cdots < i_k \) such that \(\pi(i_1) < \pi(i_2) < \cdots < \pi(i_k) \)). Show that if \(\pi \) is chosen uniformly at random from \(S(n) \) then \(\Pr(|X - E[X]| > \alpha\sqrt{n}) \) decays exponentially in \(\alpha \).

5. Consider the following process. We have a collection of \(n \) bins, and a sequence of balls arrive one at a time. When each ball arrives, 2 bins are chosen at random, and the ball is placed in the bin that contains fewer balls (ties are broken arbitrarily). Let the stopping time \(T \) be the step at which \(n^{4/5} \) bins are empty. Determine an explicit function \(f(n) \) such that \(T = f(n)(1 + o(1)) \) whp.

6. The following process is known as random greedy triangle packing. We begin with \(G(0) \), which is the complete graph on \(n \) vertices. At step \(i \geq 1 \) let \(xyz \) be a triangle chosen uniformly at random from the collection of all triangles \(G(i) \) and set
 \[G(i+1) = G(i) - \{xy, yz, xz\}. \]
 The process continues until there are no triangles remaining in the graph. Let \(Q(i) \) be the number of triangles in \(G(i) \), and set \(p = p(i) = 1 - 6i/n^2 \). (We make this choice so that \(p(n^3) \) is approximately the number of edges in \(G(n) \).) Prove
 \[Q(i) < \frac{p^3n^3}{6} + \frac{pn^2}{3} \]
 for \(i = 1, \ldots, n^2/6 - n^{3/4} \).
 You may assume that for every pair of vertex \(x, y \) the number of common neighbors of \(x \) and \(y \) is \(np^2 + O(n^{2/3}) \) for all \(i \).