21-737 Probabilistic Combinatorics Homework III: Lovász Local Lemma, Correlation Inequalities Due: Friday, October 10

The first two problems require the following definitions. For a graph G = (V, E) and sets of colors $(S(v) : v \in V)$, with each S(v) a subset of some universal set of colors Γ , a coloring $\sigma : V \to \Gamma$ is S-legal if it is a proper coloring (i.e. adjacent vertices get different colors) and $\sigma(v) \in S(v)$ for all $v \in V$.

The **list-chromatic number** of G, denoted $\chi_{\ell}(G)$, is the smallest t such that for every choice of $(S(v): v \in V)$ such that $|S(v)| = t \ \forall v$ there exists an S-legal coloring.

1. Show that for a bipartite graph G of maximum degree Δ we have

$$\chi_{\ell}(G) = O(\Delta/(\log \Delta)).$$

2. Let $k \geq 1$ be fixed. Let G = (V, E) be a simple graph, and let $(S(v) : v \in V)$ be sets of at least 10k colors for each vertex. Assume that for each $v \in V$ and each color γ we have

$$|\{w : w \sim v \text{ and } \gamma \in S(w)\}| \le k.$$

Prove that G has an S-legal coloring.

3. Use the Local Lemma to show

$$R(3,t) = \Omega\left(\frac{t^2}{\log^2 t}\right).$$

4. A family of sets \mathcal{F} is **intersecting** if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$. Let $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k$ are intersecting subset of a set X where |X| = n. Prove

$$\left| \bigcup_{i=1}^{k} \mathcal{F}_i \right| \le 2^n - 2^{n-k}$$

Hint: Assume each \mathcal{F}_i is a maximal intersecting family.

5. Suppose $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ satisfy

$$A \not\subseteq B$$
 and $B \not\subseteq A$ $\forall A \in \mathcal{A}, B \in \mathcal{B}$.

Prove that

$$|\mathcal{A}|^{1/2} + |\mathcal{B}|^{1/2} \le 2^{n/2}.$$