1. Consider the random graph $G_{n,1/2}$. Show that we have

$$\chi(G_{n,1/2}) < (1 + o(1)) \frac{n}{\log_2 n}$$

with high probability (meaning that the probability of this event tends to 1 as n tends to infinity). Recall that χ is the chromatic number, the minimum number of colors in a proper vertex coloring of the graph.

Hint: ‘Reveal’ $G_{n,1/2}$ in n steps by revealing the edges between i and $\{1, \ldots, i - 1\}$ at step i. Then use conditional probabilities.

2. Show that there is a constant C such that: if \mathcal{H} is a t-uniform, t-regular hypergraph on $V = [n]$ where n is sufficiently large (relative to t), then there exists $\sigma : V \rightarrow \{\pm 1\}$ such that

$$|\sigma(H)| \leq C \sqrt{t \log t} \quad \forall H \in \mathcal{H}$$

and

$$|\sigma(V)| < nt^{-10},$$

where define $\sigma(X) = \sum_{x \in X} \sigma(x)$.

Hint: You might make use of the following:

Chernoff Bound. If X_1, X_2, \ldots, X_n are i.i.d. variables with $Pr(X_i = -1) = Pr(X_i = 1) = 1/2$ then

$$Pr\left(\sum_{i=1}^{n} X_i > \lambda \sqrt{n}\right) \leq e^{-\lambda^2/2}.$$

3. Let Y_1, Y_2, \ldots, Y_s be chosen uniformly and independently at random from $[m] := \{1, 2, \ldots, m\}$ and set $Y = \{Y_1, \ldots, Y_s\}$.

 (a) Show that for any $\emptyset \neq A \subseteq [m]$ and $i \in [m] \setminus A$ we have

 $$Pr(i \in Y|A \subseteq Y) \leq Pr(i \in Y)$$

 (b) Show

 $$Pr(Y = [m]) < [1 - (1 - 1/m)^s]^m.$$

 Hint: Use a coupling.

4. For a graph $G = (V, E)$ and sets of colors $(S(v) : v \in V)$, with each $S(v)$ a subset of some universal set of colors Γ, a coloring $\sigma : V \rightarrow \Gamma$ is S-legal if it is a proper coloring (i.e. adjacent vertices get different colors) and $\sigma(v) \in S(v)$ for all $v \in V$.
The list-chromatic number of G, denoted $\chi_l(G)$, is the smallest t such that for every choice of $\{S(v) : v \in V\}$ such that $|S(v)| = t$ $\forall v$ there exists an S-legal coloring.

Show that for a bipartite graph G of maximum degree Δ we have

$$\chi_l(G) = O(\Delta/(\log \Delta)).$$

5. Let $k \geq 1$ be fixed. Let $G = (V, E)$ be a simple graph, and let $S(v)$ be a set of at least $10k$ colors for each $v \in V$. Assume that for each $v \in V$ and each color γ we have

$$|\{w : w \sim v \text{ and } \gamma \in S(w)\}| \leq k.$$

Prove that G has an S-legal coloring.