1. Consider the random graph \(G_{n,1/2} \). Show that we have
\[
\chi(G_{n,1/2}) < (1 + o(1)) \frac{n}{\log_2 n}
\]
with high probability (meaning that the probability of this event tends to 1 as \(n \) tends to infinity). Recall that \(\chi \) is the chromatic number, the minimum number of colors in a proper vertex coloring of the graph.

Hint: ‘Reveal’ \(G_{n,1/2} \) in \(n \) steps by revealing the edges between \(i \) and \(\{1, \ldots, i - 1\} \) at step \(i \). Then use conditional probabilities.

2. Show that there is a constant \(C \) such that: if \(H \) is a \(t \)-uniform, \(t \)-regular hypergraph on \(V = [n] \), then there exists \(\sigma : V \to \{\pm 1\} \) such that
\[
|\sigma(H)| \leq C \sqrt{t \log t} \quad \forall H \in \mathcal{H}
\]
and
\[
|\sigma(V)| < nt^{-10},
\]
where define \(\sigma(X) = \sum_{x \in X} \sigma(x) \).

3. Let \(Y_1, Y_2, \ldots, Y_s \) be chosen uniformly and independently at random from \([m] := \{1, 2, \ldots, m\} \) and set \(Y = \{Y_1, \ldots, Y_s\} \).

(a) Show that for any \(\emptyset \neq A \subseteq [m] \) and \(i \in [m] \setminus A \) we have
\[
Pr(i \in Y | A \subseteq Y) \leq Pr(i \in Y)
\]
(b) Show
\[
Pr(Y = [m]) < [1 - (1 - 1/m)^s]^m.
\]

4. For a graph \(G = (V, E) \) and sets of colors \(\{S(v) : v \in V\} \), with each \(S(v) \) a subset of some universal set of colors \(\Gamma \), a coloring \(\sigma : V \to \Gamma \) is \(\Gamma \)-legal if it is a proper coloring (i.e. adjacent vertices get different colors) and \(\sigma(v) \in S(v) \) for all \(v \in V \).

The **list-chromatic number** of \(G \), denoted \(\chi_l(G) \), is the smallest \(t \) such that for every choice of \(\{S(v) : v \in V\} \) such that \(|S(v)| = t \quad \forall v \) there exists an \(\Gamma \)-legal coloring.

Show that for a bipartite graph \(G \) of maximum degree \(\Delta \) we have
\[
\chi_l(G) = O(\Delta/(\log \Delta)).
\]

5. Let \(k \geq 1 \) be fixed. Let \(G = (V, E) \) be a simple graph, and let \(S(v) \) be a set of at least \(10k \) colors for each \(v \in V \). Assume that for each \(v \in V \) and each color \(\gamma \) we have
\[
|\{w : w \sim v \text{ and } \gamma \in S(w)\}| \leq k.
\]
Prove that \(G \) has an \(S \)-legal coloring.
6. Suppose $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ satisfy

$$A \not\subseteq B \not\subseteq A \quad \forall A \in \mathcal{A}, B \in \mathcal{B}.$$

Prove that

$$|\mathcal{A}|^{1/2} + |\mathcal{B}|^{1/2} \leq 2^{n/2}.$$