1. The threshold is $n^{-2/3}$. For $p \ll n^{-2/3}$ a very simple first moment calculation shows that no such collection of triangles appears. For $p \gg n^{-2/3}$ show that every set of $n/2$ vertices contains a triangle. (This actually also works for some $p = \Omega(n^{-2/3})$).

2. Start by proving the following:

 If A_1, A_2, \ldots, A_n are a collection of subsets of a set Ω then

 \[|\{x \in \Omega : \exists! i \text{ such that } x \in A_i\}| = \sum_{I \subseteq [n]} |I|(-1)^{|I|-1}|A_I| \]

 where $A_I = \cap_{i \in I} A_i$.

 Prove this by reversing a sum.

3. The statement is false. Of course, in order to construct a counterexample we want to consider events with small covariance but a large intersection...

4. (a) Use Bonferroni.

 (b) Simply count the number of configurations that project onto a given simple graph.

 (c) Use question 2.