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Notes on the 2-SAT phase transition

Let F be a random 2-SAT formula on a set of n variables with m = cn clauses where the
clauses are chosen uniformly at random from the set of

4

(
n

2

)
possible clauses without replacement. So our probability space is the uniform distribution

on the collection
(
4(n2)
m

)
2-SAT formulae on n variables. Our goal in this note is to show that

if c > 1 then the probability that F is satisfiable goes to 0 as n tends to infinity. We follow
the arguement of Chvatál and Reed.

Note 1. If A is a set of o(n1/2) distinct clauses then

P(A ⊂ F ) ∼

(
m

4
(
n
2

))|A|

∼
( c

2n

)|A|

Recall that for each 2-SAT formula F we define a digraph D(F ) on the vertex set given
by the set of 2n literals. If u ∨ w is a clause in F then we add the arcs u → w and w → u
in the digraph. Note that we can view the arcs in D(F ) as implications.

For the purposes of this note, we define a bicycle in a formula F to be a cycle in D(F ) of
the form

x,w1, w2, . . . , wt−1, x, wt+1, . . . , w2t−1, x

where x,w1, w2, . . . , wt−1, wt+1, . . . , w2t−1 are literals on distinct variables and

t = log2 n.

Note that if D(F ) contains such a bicycle then F is not satisfiable. Note further that each
bicycle in D(F ) corresponds to a set of clauses in F ; we will refer to these clauses as the
’clauses in F ’ without further comment. Let X be the number of bicycles of this form that
appear in D(F ). We show that P(X > 0) → 1, and thus the probability of satisfiability goes
to 0.

We apply the second moment method. We begin with the expected value.

E[X] ∼ (2n)(n− 1)2t−22
2t−2 ·

( c

2n

)2t
∼ (2n)2t−1 ·

( c

2n

)2t
=

c2t

2n
.

As this expected value goes to infinity with n, it suffices to show V ar[X] = o(E[X]2).
For each potential bicycle A let XA be the indicator random variable for the event that

A appears in D(F ). For a fixed bicycle A let N0 be the number of bicycles B that share no
clauses with A. And for 1 ≤ i ≤ j let N(i, j) be the number of bicycles B that intersect A



in i clauses that span j literals. We have

V ar[X] =
∑
A,B

E[XAXB]− E[XA]E[XB]

≤
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1≤i<j

N(i, j)2
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≤ 2
∑
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1≤i<j

N(i, j)
( c

2n

)4t−i

(1)

Now, we bound N(i, j). Let ℓ be the number of maximal paths spanned by the arcs in the
intersection of bicycles A and B. If these bicycles intersect in i clauses that span j vertices
along the cycle that defines A then there j − i such paths. So set ℓ = j − i. We have

N(i, j) ≤ 2

(
2t

2ℓ

)
· (2t)ℓℓ!2ℓ · 4 · (2n)2t−j ≤ 8(2t)3ℓ(2n)2t−j.

The explanation for this bound is as follows. We begin by specifying ℓ disjoint paths in A.
We do this by specifying the start and end points as a collection of 2ℓ vertices in A. Once
these vertices are selected there are two ways to specify the paths (one is the complement
of the other). Our next step is to place these paths in B. There are at most (2t)ℓ ways to
specify the starting points. Once the starting points are placed we determine which path
to start at which point in ℓ! ways. Next we note that there are two choices of the direction
for each path: One goes around the ’outside’ of B, the other traverses the negations. We
account for this with the 2ℓ. Note that there may be a choice to switch from the ‘inside’ to
‘outside’ (or vice versa) if the path cross the special points x and x; this is why we multiply
by 4. Finally, we choose the literals in B that do not appear in A.

Now that we are ready to bound the variance. We do this in 3 cases.

Case 1. ℓ ≥ 2.

The contribution to (1) in this case can be bounded as follows:

(2n)2t−1 · (2t)2 · 8(2t)3ℓ(2n)2t−j ·
( c

2n

)4t−i

.

The first term is the number of choice for the bicycle A. The second term is a bound on the
number of choices of i and j. This is followed by an upper bound on N(i, j), and the final
term comes from the probability that both A and B appear. Noting that t = log2 n and
recalling E[X] ∼ c2t/2n and c > 1 we conclude that this contribution to the variance is at
most

E[X]2(2n)1+i−j(2t)3ℓO((log n)4) = E[X]22n

(
(2t)3

2n

)ℓ

O(log n)4).

As ℓ ≥ 2, we see that this contribution is o(E[X]2).



Case 2. ℓ = 1 and j ≥ t

We have the following on bound the contribution to (1) for this case:

(2n)2t−1 · t · 8(2t)3(2n)2t−j ·
( c

2n

)4t−i

.

As in the previous case, the first term is the number of choices for the bicycle A, the second
term is the number of choices for j, this is followed by an estimate for N(i, j), and finally
the probability term. This contribution is at most

E[X]2(2n)1−ℓ · 27(log n)6 ·
(
1

c

)i

.

As i ≥ t−1 and t = log2 n, the ci in the denominator dominates the log6 n in the numerator.
Therefore, the total contribution to the variance in this case is o(E[X2]).

Case 3. ℓ = 1 and j < t

Here we follow the calculation from the previous case, but we are not able to use the ci in
the denominator as it may be too small relative to log8 n. We make a subtle observation that
improves the bound. Lets look again at our estimate for N(i, j). We bound the number of
choices for B by first identifying the path in A and the placement of that path in B. There
are O(t3) ways to make these choices. We then set the remaining literals in B one at a time.
However, since ℓ = 1 and j < t, when we make these choices we will need to make a choice
for x or x after the antipodal element has already been set (either in the path or as one of
the previous choices of the 2t − j choices we make when we set the elements of B that do
not appear in A. In both cases, this element is prescibed. We conclude that in this case we
have

N(i, j) = O(t3n2t−j−1).

Plugging this improved estimate into the bounds for the previous case, we see that the
contribution to variance here is o(E[X2]).


