This document contains a list of the important definitions and theorems that have been covered in the course but do not appear on the previous review sheets. It is not a complete listing of what has happened in lecture. The sections from the book that correspond with each topic are also given.

Note: The final exam is cumulative. You should consult the previous review sheets for review materials that cover the material that was tested on exams 1-3.

Following the list of important definitions and theorems you will find a collection of review exercises.

8. Minimum Weight Spanning Tree:

Matoušek and Nešetřil. Sections 4.3 - 4.5.
Lovász, Pelikán and Vestergombi. Section 9.1

Definition 1. Suppose $G = (V, E)$ is a connected graph and $f : E \to \mathbb{R}^+$ is an assignment of weights to the edges of G. Let T be the collection of subsets S of E with the property that (V, S) is a tree. A minimum weight spanning tree of G is a tree $T \in T$ such that

$$\sum_{e \in T} w(e) = \min_{S \in T} \sum_{e \in S} w(e).$$

Theorem 2. Let $G = (V, E)$ be a connected graph and let $w : E \to \mathbb{R}^+$ be an assignment of weights to the edges of G. The following greedy algorithm produces a minimum weight spanning tree.

Kruskal’s Algorithm

Set $T = \emptyset$
While $|T| \leq |V| - 2$

Let X be the set of edges e in $E \setminus T$

such that $(V, T) + e$ does not contain a cycle

Choose $e \in X$ of minimum weight

Add e to T
Theorem 3. Let $G = (V, E)$ be a connected graph and let $w : E \rightarrow \mathbb{R}^+$ be an assignment of distinct weights to the edges of G (i.e. f is an injective map). The following greedy algorithm produces a minimum weight spanning tree

Bubbles Algorithm

Set $E_0 = \emptyset$

For $i = 0, \ldots, |V| - 2$

Let $X_1, \ldots, X_{|V| - i}$ be the connected components of (V, E_i)

Let e_{i+1} be the edge of minimum weight among edges of E that intersect two of the sets $X_1, \ldots, X_{|V| - i}$.

Set $E_{i+1} = E_i \cup \{e_{i+1}\}$.

Review Exercises: Working the following problems should help in preparation for the test. Some (but not all) of these are more difficult than questions that might appear on the quiz.

Note: the final is cumulative. This list does represent the full scope of questions that could appear on the final. See the review sheets for the tests for a more complete list of review exercises.

1. Let $X = \{1, 2, \ldots, n\}$. Let \mathcal{F} be a collection of 3-element subsets of X (formally, $\mathcal{F} \subseteq \binom{X}{3}$). For each $i \in X$ define $d(i) = |\{A \in \mathcal{F} : i \in A\}|$. In words, $d(i)$ is the number of sets in \mathcal{F} that contain i. We define

 $$A = \{i \in X : d(i) \equiv 1 \mod 3\} \quad B = \{i \in X : d(i) \equiv 2 \mod 3\}.$$

 Prove that $|A| \equiv |B| \mod 3$.

2. What is the number of strings consisting of p 0’s and q 1’s in which each pair of 1’s is separated by at least two 0’s? Explain your answer.

3. Prove that for $n = 1, 2, \ldots$ we have

 $$2\sqrt{n+1} - 2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n} - 1.$$

4. (a) Show that

 $$(1 - 4x)^{-1/2} = \sum_{n \geq 0} \binom{2n}{n} x^n.$$

 (b) Simplify

 $$\sum_{n \geq 0} \binom{2n - 1}{n} x^n$$

5. (a) Determine the generating function for the sequence a_0, a_1, \ldots defined by the recurrence

 $$a_n = 5a_{n-1} - 6a_{n-2} \quad \text{for } n \geq 2$$

 and $a_0 = a_1 = 1$.

 (b) Give a closed form expression for a_n.
6. Let \(a_n \) be the number of ordered triples \((i, j, k)\) of integer numbers such that \(i \geq 0, j \geq 1, k \geq 1 \) and \(i + 3j + 3k = n \). Find the generating function for the sequence \(a_0, a_1, a_2, \ldots \).

7. Let \(k \) be a positive integer. Let \(G = (V,E) \) be a graph such that \(|V| = 6k \), half of the vertices in \(G \) have degree \(2k \) and the other half of the vertices in \(G \) have degree \(4k \). Show that \(G \) is Hamiltonian.

8. Ann and Bob play a game in which they alternately toss a fair die, with Ann rolling first. The one who is first to roll a 6 wins the game.
 (a) Set up a probability space that describes this experiment.
 (b) Determine the probability that Ann wins on her second roll.
 (c) Determine the probability that Ann wins the game.

9. A coloring of a collection of \(m \) indistinguishable balls with \(n \) (distinguishable) colors is chosen uniformly at random from the set of all such colorings.
 (i) Describe the probability space for this experiment.
 (ii) Let the random variable \(X \) count the number of colors that are used exactly twice. Determine \(E[X] \).

10. Let \(n \) be a positive integer. Let \(X \) be the set of strings \(x_1, x_2, \ldots, x_{2n} \) consisting of \(n \) 1’s and \(n - 1 \)’s such that
 \[
 x_1 + x_2 + \cdots + x_k \geq 0 \quad \text{for} \quad k = 1, 2, \ldots, 2n.
 \]
 Show that
 \[
 |X| = \frac{1}{n+1} \binom{2n}{n}
 \]

11. Let \(G = (V,E) \) be a connected graph. Prove that there is a graph \(H = (V,F) \) such that \(F \subseteq E \) and \(H \) is a tree.

12. Let \(G \) be a connected graph with a weight function \(w \) on the edges, and assume that \(w \) is an injective function (i.e. every edge gets a different weight). Prove that there is only one minimum weight spanning tree.

13. Suppose we have a plane graph \(G = (V,E) \) with \(n \) vertices and we assign weights to the edges by setting the weight of edge \(\{x,y\} \) to be the distance between \(x \) and \(y \). Let \(T \) be a minimum weight spanning tree. Show \(T \) has no vertex of degree 7 or more.

14. Let \(G = (V,E) \) be a connected graph and let \(w : E \to \mathbb{R}^+ \) be a weight function for the edges. Two players, Optimist and Pessimist collaborate in forming a spanning tree in \(G \). They proceed in a series of rounds. At the start we set \(A = E \), where \(A \) is the set of available edges, and we set \(C = \emptyset \), where \(C \) is the set of chosen edges. In each round a coin is flipped. If the outcome is a Head then the Optimist chooses an edge \(e \) of \(A \) of minimum weight with the property that \((V,C) + e \) does not form a cycle, and the edge is added to \(C \) and removed from \(A \). If the outcome is a Tail then the Pessimist selects an edge \(f \) of maximum weight among the edges of \(A \) with the property that \((V,A \cup C) - f \) is connected. The edge \(f \) is removed from \(A \). This process continues until neither player can make a move. Show that this process results in a minimum weight spanning tree in \(G \) regardless of the outcome of the coin flips.

From LPV: 9.2.4.