21-228 Discrete Mathematics
 Course Review 4

This document contains a list of the important definitions and theorems that have been covered thus far in the course. It is not a complete listing of what has happened in lecture. The sections from the book Invitation to Discrete Mathematics, second edition by Matousek and Nesetril that correspond with each topic are also given.

Following the list of important definitions and theorems you will find a collection of review exercises.
7. Graph Theory continued: note: Hamilton cycles are not covered in Matousek and Nesetril.

Definition 94. A Hamilton cycle in a graph $G=(V, E)$ is a cycle that contains every vertex in V. The graph G is Hamiltonian if it has a Hamilton cycle.
Definition 95. Let $G=(V, E)$ be a graph and let $e \in\binom{V}{2} \backslash E$. We define the graph $G+e$ to be the graph with vertex set V and edge set $E \cup\{e\}$.
Lemma 96. Let $G=(V, E)$ and $|V|=n$. If $x, y \in V,\{x, y\} \notin E$ and $d_{G}(x)+d_{G}(y) \geq n$ then

$$
G+e \text { is Hamiltonian } \Leftrightarrow G \text { is Hamiltonian. }
$$

Definition 97. Let $G=(V, E)$ be a graph. The minimum degree of G is

$$
\delta(G)=\min \{d(x): x \in G\} .
$$

Corollary 98 (Dirac's Theorem). If $G=(V, E)$ is a graph with $|V|=n$ and $\delta(G) \geq n / 2$ then G is Hamiltonian.
8. Optimization: Section 5.4 and 5.5

Definition 99. Suppose $G=(V, E)$ is a connected graph and $f: E \rightarrow \mathbb{R}^{+}$is an assignment of weights to the edges of G. Let \mathcal{T} be the collection of subsets S of E with the property that (V, S) is a tree. A minimum weight spanning tree of G is a tree $T \in \mathcal{T}$ such that

$$
\sum_{e \in T} w(e)=\min _{S \in \mathcal{T}} \sum_{e \in S} w(e)
$$

Theorem 100. Let $G=(V, E)$ be a connected graph and let $f: E \rightarrow \mathbb{R}^{+}$be an assignment of weights to the edges of G The following greedy algorithm produces a minimum weight spanning tree.

```
Kruskal's Algorithm
Set T=\emptyset
While |T| \leq |V|-2
    Let X be the set of edges e in E\T
        such that (V,T)+e does not contain a cycle
    Choose e\inX of minimum weight
    Add e to T
```

Definition 101. Let $G=(V, E)$. A connected component of G is a maximal connected subgraph of G. To be precise, a connected component of G is a graph

$$
\left(X,\binom{X}{2} \cap E\right)
$$

such that

- $X \subseteq V$,
- $\left(X,\binom{X}{2} \cap E\right)$ is connected, and
- If $X \subset Y \subseteq V$ then $\left(Y,\binom{Y}{2} \cap E\right)$ is not connected.

Theorem 102. Let $G=(V, E)$ be a connected graph and let $f: E \rightarrow \mathbb{R}^{+}$be an assignment of distinct weights to the edges of G The following greedy algorithm produces a minimum weight spanning tree.

Bubbles Algorithm

Set $E_{0}=\emptyset$ and $t=0$
While $\left|E_{t}\right| \leq|V|-2$
Let $X_{1}, X_{2}, \ldots, X_{\ell}$ be the vertex sets of the connected components of $\left(V, E_{t}\right)$
For $i=1, \ldots, \ell$ let $e_{i} \in E$ be an edge of minimum weight such that $\left|e_{i} \cap X_{i}\right|=1$
set $E_{t+1}=E_{t} \cup\left\{e \in E: \exists i\right.$ such that $\left.e=e_{i}\right\}$ and increment t

Review Exercises: Working the following problems should help in preparation for the test. Some (but not all) of these are more difficult than questions that might appear on the quiz.

Note: the final is cummulative. This list does represent the full scope of questions that could appear on the final. See the review sheets for the tests for a more complete list of review exercises.

1. Let $X=\{1,2, \ldots n\}$. Let \mathcal{F} be a collection of 3 -element subsets of \mathcal{F} (formally, $\mathcal{F} \subseteq$ $\left.\binom{X}{3}\right)$. For each $i \in X$ define $d(i)=|\{A \in \mathcal{F}: i \in A\}|$. In words, $d(i)$ is the number of sets in \mathcal{F} that contain i. We define

$$
A=\{i \in X: d(i) \equiv 1 \bmod 3\} \quad B=\{i \in X: d(i) \equiv 2 \bmod 3\}
$$

Prove that $|A| \equiv|B| \bmod 3$.
2. What is the number of strings consisting of $p 0$'s and $q 1$'s in which each pair of 1 's is separated by at least two 0's? Explain your answer.
3. Prove that for $n=1,2, \ldots$ we have

$$
2 \sqrt{n+1}-2<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1
$$

4. (a) Show that

$$
(1-4 x)^{-1 / 2}=\sum_{n \geq 0}\binom{2 n}{n} x^{n} .
$$

(b) Simplify

$$
\sum_{n \geq 0}\binom{2 n-1}{n} x^{n}
$$

5. (a) Determine the generating function for the sequence a_{0}, a_{1}, \ldots defined by the recurrence

$$
a_{n}=5 a_{n-1}-6 a_{n-2} \quad \text { for } n \geq 2
$$

and $a_{0}=a_{1}=1$.
(b) Give a closed form expression for a_{n}.
6. Let a_{n} be the number of ordered triples (i, j, k) of integer numbers such that $i \geq 0, j \geq$ $1, k \geq 1$ and $i+3 j+3 k=n$. Find the generating function for the sequence $a_{0}, a_{1}, a_{2}, \ldots$.
7. Let k be a positive integer. Let $G=(V, E)$ be a graph such that $|V|=6 k$, half of the vertices in G have degree $2 k$ and the other half of the vertices in G have degree $4 k$. Show that G is Hamiltonian.
8. Ann and Bob play a game in which they alternately toss a fair die, with Ann rolling first. The one who is first to roll a 6 wins the game.
(a) Set up a probability space that describes this experiment.
(b) Determine the probability that Ann wins on her second roll.
(c) Determine the probability that Ann wins the game.
9. A coloring of a collection of m indistinguishable balls with n (distinguishable) colors is chosen uniformly at random from the set of all such colorings.
(i) Describe the probability space for this experiment.
(ii) Let the random variable X count the number of colors that are used exactly twice. Determine $E[X]$.
10. Let n be a positive integer. Let X be the set of strings $x_{1}, x_{2}, \ldots, x_{2 n}$ consisting of n 1's and $n-1$'s such that

$$
x_{1}+x_{2}+\cdots+x_{k} \geq 0 \quad \text { for } k=1,2, \ldots, 2 n \text {. }
$$

Show that

$$
|X|=\frac{1}{n+1}\binom{2 n}{n}
$$

11. Let $G=(V, E)$ be a connected graph. Prove that there is a graph $H=(V, F)$ such that $F \subseteq E$ and H is a tree.
12. Consider the following algorithm for the minimum weight spanning tree algorithm. Let $G=(V, E)$ be a connected graph and let $w: E \rightarrow \mathbb{R}^{+}$. Label the edges $e_{1}, e_{2}, \ldots, e_{m}$ in such a way that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$. Set $E_{0}=E$ and

$$
E_{i}= \begin{cases}E_{i-1} \backslash\left\{e_{i}\right\} & \text { if the graph } G-e_{i} \text { is connected } \\ E_{i-1} & \text { otherwise }\end{cases}
$$

Prove that $\left(V, E_{m}\right)$ is a minimum weight spanning tree of G.
13. Let G be a connected graph with a weight function w on the edges, and assume that w is an injective function (i.e. every edge gets a different weight). Prove that there is only one mimimum weight spanning tree.
14. Let G be a connected graph that is not a path. Prove that there are at least three vertices with the property that the removal of any one of them does not disconnect the graph.
15. Prove that a planar bipartite graph with $n \geq 3$ vertices has at most $2 n-4$ edges.
16. Prove that a planar graph with $n \geq 3$ vertices has at most $3 n-6$ edges.
17. A forest is a graph that contains no cycle. Prove that a forest on n vertices with k connected components has $n-k$ edges.
18. Suppose that we run the Bubbles algorithm on a graph with n vertices. Show that the algorithm terminates in at most $\log _{2} n$ steps.

From Lovász, Pelikán and Vesztergombi: 9.2.4, 9.2.5,

